yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equation (with taking exp of both sides) | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is see if we can solve the differential equation: the derivative of y with respect to x is equal to x times y. Pause this video and see if you can find a general solution here.

So, the first thing that my brain likes to do when I see a differential equation is to say, hey, is this separable? And when I say separable, can I get all the y's and dy's on one side and all the x's and dx's on the other side? You can indeed do that if we treat our differentials like if we could treat them like algebraic variables, which is fair game when you're dealing with differential equations like this.

We could multiply both sides by dx. So, multiply both sides by dx and we could divide both sides by y. Let me move this over a little bit so we have some space. So, we could also multiply both sides by 1 over y, 1 over y. And what that does is these dx's cancel out, and this y and 1 over y cancels out.

We are left with, let me write all the things in terms of y on the left-hand side in blue. So, we have 1 over y dy is equal to, and then I'll do all this stuff in orange. We have: is equal to... we're just left with an x and a dx, x dx. And then we’ll want to take the indefinite integral of both sides.

Now, what's the antiderivative of 1 over y? Well, if we want it in the most general form, this would be the natural log of the absolute value of y, and then this is going to be equal to the antiderivative of x, which is x squared over 2. And then we want to put a constant on either side; I'll just put it on the right-hand side plus c. This ensures that we're dealing with the general solution.

Now, if we want to solve explicitly for y, we could raise e to both sides power. Another way to think about it is if this is equal to that, then e to this power is going to be the same thing as e to that power.

Now, what does that do for us? Well, what is e to the natural log of the absolute value of y? Well, I'm raising e to the power that I would have to raise e2 to get to the absolute value of y. So, the left-hand side here simplifies to the absolute value of y, and we get that as being equal to...

Now, we could use our exponent properties. This over here is the same thing as e to the x squared over 2 times e to the c. I am just using our exponent properties here. Well, e to the c we could just view that as some other type of constant; this is just some constant c.

So, we could rewrite this whole thing as c e e to the x squared over 2. Hopefully, you see what I'm doing there. I just use my exponent properties: e to the sum of two things is equal to e to the first thing times e to the second thing.

And I just said, well, e to the power of some constant c we could just relabel that as, let's call that our blue c. And so, this simplifies to blue c times e to the x squared over 2.

Now, we still have this absolute value sign here, so this essentially means that y could be equal to... We could write it this way: y could be equal to plus or minus c e e to the x squared over 2.

But once again we don't know what this constant is; I didn't say that it was positive or negative. So, when you say a plus or minus of a constant here, you could really just subsume all of this. I'll just call this with red c, so we could say that y is equal to... I’ll just rewrite it over again for fun: y is equal to red c, not the red c, but a red z times e to the x squared over 2.

This right over here is the general solution to the original separable differential equation.

More Articles

View All
Comparing decimals example
So we have four numbers listed here. What I would like you to do is get out some pencil and paper and pause this video. See if you can order these numbers from least to greatest. So the least would be at the left and then keep going greater and greater un…
The Case of the Early Bird | Teacher Resources | Financial Literacy | Khan Academy
The name’s Duction, Detective Duction. I’m a private eye, and my eye is pointed straight at Monetary Mysteries. Love them! Financial Tom Foolery, dollar double dealing—that’s my wheelhouse, and no mistake. There’s one case I keep coming back to, turning …
Dark Energy: The Void Filler
A quick shoutout to Squarespace for sponsoring this video. In 1999, Saul Perlmutter was asking himself a question that many of us may have thought of before: will the universe exist forever, or will it have an end? Will the universe slowly expand for th…
BONUS VIDEO | Singular They | The parts of speech | Grammar | Khan Academy
[Voiceover] So you may have been hearing a lot of talk about this thing called singular they recently, not knowing entirely what it is or whether or not it’s okay to use in a sentence or in formal writing. Um, it’s been in the news a lot lately; you know …
Understanding Investor Terms & Incentives || Rookie Mistakes with Dalton Caldwell and Michael Seibel
It’s almost as if they get to run this game every day with multiple companies and all you’re trying to do is raise money and get back to work. Hey, this is Michael Seibel with Dalton Caldwell and welcome to Rookie Mistakes. We’ve asked YC founders for th…
SVB: The Canary in the Coal Mine
You’re mentioning like crack starting to appear. Um, and I know you wrote a piece about Silicon Valley Bank’s downfall being the canary in the coal mine. Can we just explore that a bit further? Um, so the canary in the coal mine is meant to reflect two t…