yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability with permutations & combinations example: taste testing | Probability & combinatorics


3m read
·Nov 10, 2024

  • [Instructor] We're told that Samara is setting up an olive tasting competition for a festival. From 15 distinct varieties, Samara will choose three different olive oils and blend them together. A contestant will taste the blend and try to identify which three of the 15 varieties were used to make it. Assume that a contestant can't taste any difference and is randomly guessing. What is the probability that a contestant correctly guesses which three varieties were used?

So pause this video and see if you can think about that. And if you can just come up with the expression, you don't have to compute it. That is probably good enough, at least for our purposes. All right, now let's work through this together.

So we know several things here. We have 15 distinct varieties and we are choosing three of those varieties. And anytime we're talking about probability and combinatorics, it's always interesting to say, "Does order matter? Does it matter what order that Samara is picking those three from the 15?"

It doesn't look like it matters. It looks like we just have to think about what three they are. It doesn't matter what order either she picked them in, or the order in which the contestant guesses them in. And so if you think about the total number of ways of picking three things from a group of 15, you could write that as 15, choose three.

Once again, this is just shorthand notation for how many combinations are there, so you can pick three things from a group of 15? So some of you might have been tempted to say, "Hey, let me think about permutations here." And I have 15 things. And from that, I wanna figure out how many ways can I pick three things that actually has order mattering?

But this would be the situation where we're talking about the contestant actually having to maybe guess in the same order in which the varieties were originally blended, or something like that, but we're not doing that; we just care about getting the right three varieties.

So this will tell us the total number of ways that you can pick three out of 15. And so what's the probability that the contestant correctly guesses which three varieties were used? Well, the contestant is going to be guessing one out of the possible number of scenarios here.

So the probability would be one over 15, choose three. And if you wanted to compute this, this would be equal to one over, now, how many ways can you pick three things from 15? And of course there is a formula here, but I always like to reason through it.

Well, you could say, "All right, if there's three slots, there's 15 different varieties that could've gone into that first slot, and then there's 14 that could go into that second slot, and then there's 13 that can go into that third slot."

But then we have to remember that it doesn't matter what order we pick them in. So how many ways can you rearrange three things? Well, it would be three factorial, or three times two times one. So this would be the same thing as three times two times one over 15 times 14 times 13.

See, I can simplify this, divide numerator and denominator by two, divide numerator and denominator by three. This is going to be equal to one over 35 times 13. This is going to be one over 350 plus 105, which is 455. And we are done.

More Articles

View All
Colonial Weaponry | Saints & Strangers
[Music] Radio weapons, push off, push off design. Mr. Bradford, fire! This is your standard, uh, standard matchlock musket. It was the earliest firing, uh, musket that there was. This over here is a match cord; both sides were normally kept lit in case …
1996 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Just a little early but I think, uh, everyone’s had a chance to take their seats. I must say this is the first time I’ve seen this program. They told me they’d surprise me and they certainly did. Mark Hamburg, our Chief Financial Officer, who i…
2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It’s nice that they took the derivative for us. Now part A, let ( …
The Middle Class Just Got FINANCIALLY RUINED
What’s up, Graham? It’s guys here. So how should I say this gently? Uh, we’re screwed. It was just reported that household debt reached an all-time high of 16 trillion dollars. Credit card debt is on the rise. One in three Americans making 250,000 is livi…
Ideas, Products, Teams, and Execution with Dustin Moskovitz (How to Start a Startup 2014: Lecture 1)
Welcome! Can I turn this on? Baby, all right. Hit people here. Can you guys hear me? Is the mic on? No? Maybe you can ask them to turn it on. Maybe we can get a big—there we go. All right! Maybe we can get a bigger auditorium; we’ll see. So welcome to CS…
A story's point of view | Reading | Khan Academy
Hello readers. Today I want to talk all about me. Well, I want to talk about three things. First, I want to talk all about me; then I’m going to talk about you, and then we’re going to talk about them. David, what are you talking about? You’re probably a…