yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability with permutations & combinations example: taste testing | Probability & combinatorics


3m read
·Nov 10, 2024

  • [Instructor] We're told that Samara is setting up an olive tasting competition for a festival. From 15 distinct varieties, Samara will choose three different olive oils and blend them together. A contestant will taste the blend and try to identify which three of the 15 varieties were used to make it. Assume that a contestant can't taste any difference and is randomly guessing. What is the probability that a contestant correctly guesses which three varieties were used?

So pause this video and see if you can think about that. And if you can just come up with the expression, you don't have to compute it. That is probably good enough, at least for our purposes. All right, now let's work through this together.

So we know several things here. We have 15 distinct varieties and we are choosing three of those varieties. And anytime we're talking about probability and combinatorics, it's always interesting to say, "Does order matter? Does it matter what order that Samara is picking those three from the 15?"

It doesn't look like it matters. It looks like we just have to think about what three they are. It doesn't matter what order either she picked them in, or the order in which the contestant guesses them in. And so if you think about the total number of ways of picking three things from a group of 15, you could write that as 15, choose three.

Once again, this is just shorthand notation for how many combinations are there, so you can pick three things from a group of 15? So some of you might have been tempted to say, "Hey, let me think about permutations here." And I have 15 things. And from that, I wanna figure out how many ways can I pick three things that actually has order mattering?

But this would be the situation where we're talking about the contestant actually having to maybe guess in the same order in which the varieties were originally blended, or something like that, but we're not doing that; we just care about getting the right three varieties.

So this will tell us the total number of ways that you can pick three out of 15. And so what's the probability that the contestant correctly guesses which three varieties were used? Well, the contestant is going to be guessing one out of the possible number of scenarios here.

So the probability would be one over 15, choose three. And if you wanted to compute this, this would be equal to one over, now, how many ways can you pick three things from 15? And of course there is a formula here, but I always like to reason through it.

Well, you could say, "All right, if there's three slots, there's 15 different varieties that could've gone into that first slot, and then there's 14 that could go into that second slot, and then there's 13 that can go into that third slot."

But then we have to remember that it doesn't matter what order we pick them in. So how many ways can you rearrange three things? Well, it would be three factorial, or three times two times one. So this would be the same thing as three times two times one over 15 times 14 times 13.

See, I can simplify this, divide numerator and denominator by two, divide numerator and denominator by three. This is going to be equal to one over 35 times 13. This is going to be one over 350 plus 105, which is 455. And we are done.

More Articles

View All
Identifying symmetrical figures | Math | 4th grade | Khan Academy
Which shapes are symmetrical? To answer this, we need to know what it means for a shape to be symmetrical. A shape is symmetrical if it has at least one line of symmetry. A line of symmetry, and now that answer is only helpful if we know what a line of sy…
Electronic transitions and energy | AP Chemistry | Khan Academy
In this video we’re going to be talking about exciting electrons. We can interpret that both ways: that electrons can be exciting and that we’re going to excite them into higher energy levels, or we’re going to think about what happens when they get unexc…
A Nuclear-Powered Space Mission | Mission Saturn
NARRATOR: Way out into space, the sun’s energy-giving rays grow weaker. Solar panels would be little use to Cassini passing distant planets. It needs a far longer lasting source of power: the radioactive power of plutonium-238. In Idaho Falls, behind high…
How to read a document | The historian's toolkit | US History | Khan Academy
Hello David, hello Kim. So today what we’re doing is taking a look at this speech by one of my favorite Presidents, Franklin Delano Roosevelt, which he gave at his inauguration in 1933. I think what’s really important about looking at a speech like this i…
How Did Michael Burry Predict the 2008 Housing Bubble? (The Big Short Explained)
Home ownership has long been the classic American dream, and throughout the decades, banks have continued to make new home loan products to help as many Americans as possible achieve that dream. Not to mention that governments as well have also been very …
The Spectacular Failure of Rivian Stock.
I don’t know if you’ve been paying attention to the EV space recently, but things are getting tough out there. Tesla went gangbusters until 2022 and has since struggled. BYD gangbusters until 2022 and has now struggled. VW went well in 2021 and has now st…