yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Complex rotation


3m read
·Nov 11, 2024

So now we've seen rotation by multiplying J by J over and over again, and we see that that's rotation. Now let's do it for the general idea of any complex number.

So if I have a complex number, we'll call it Z, and we'll say it's made of two parts: a real part called A and an imaginary part called B. So now what I want to do is what happens if we multiply Z by J one time.

J * Z and that equals J times A plus J B. And let's just multiply it through: J * A plus J * J * B. A and B have now switched places. So we're going to put J A on this side, J A on this side, and what do we have here? J * J is minus one, so we have minus B plus J A.

So now we have expressions for Z and JZ, and I want to go plot these on a complex plane and see what they look like.

Here's the real axis; here's the imaginary axis. Let's first plot, let's plot Z. Let's say Z has a large real value, and that would be A. And let's say that B is a smaller value; we'll put B here. That means that Z is at a location in the complex plane right there.

We can plot the dotted lines; that's Z in the complex plane. So now let's put JZ on the same plot. JZ has a real component of minus B, so that would be right about here. Here's minus B, and it has an imaginary component of plus A, so let's swing A. A goes all the way up to about here, and so that's the location of JZ.

And let me draw the hypotenuse of that. This is the vector representing JZ right there.

So now we have a bunch of triangles on the page, and what I want to demonstrate is that this angle right here is 90°. So one way to do that, let's see if we can do that. Let's say this angle here is Theta; that's the angle right there.

Now this triangle here, this triangle that we sketched in, just imagine in your head that we're going to rotate that angle up until the A leg of that triangle is resting right here on the imaginary axis. So this triangle rotates up to become this triangle here. Since we moved that triangle, we know that this angle here, that's also Theta.

It's the same triangle, just rotated up. And what does that make this angle here? This angle here, that equal 90° minus Theta. So if I combine this Theta angle with this angle here, what do I get? Theta plus 90° minus Theta, and we get 90°.

So we just showed that this angle right here is a 90° angle. That demonstrates that any complex number, number Z, if I multiply it by J, that results in a positive rotation of 90°.

So let's do this rotation again; only this time, instead of using the rectangular coordinate system, let's use the exponential representation. So in the exponential notation, we say in general Z equals some radius times e to the J Theta, where this is the angle Theta and R is the length of this hypotenuse here to get out to Z.

So what is, in this notation, what is JZ? And that equals J * R e to the J Theta. So now I'm going to do a little trick where I'm going to represent J in exponential notation.

So if I color in dark here, this is J. The vector J is right there, and it has a magnitude of one and points straight up on the imaginary axis. So I can represent J like this: I can say J is e to the J 90°. That's equivalent to this J here, and it's multiplied by R e to the J Theta.

And now the last step is we just combine these two exponents together, and we get JZ equal R * e to the J (Theta + 90°). So in exponential notation, we get this vector; here we go, an additional 90° rotation, and we go out the same distance we had originally, R.

So now we've shown that we can rotate any complex number by 90°. If we multiply it by J, we're going to get to apply this kind of transformation to working out the current and voltage relationships in inductors and capacitors, and that'll happen in a couple of videos from now.

More Articles

View All
When to use multiplication
We are told there are 10 students in the poetry club this week. Each student wrote two poems. What does the expression 10 times 2 represent? They give us some choices. Pause this video and see if you can work that out. All right, so there are 10 students…
Sci-Fi Monsters: Past, Present, Future | StarTalk
Who doesn’t love the zombies? You know, they’re always chasing you. There’s always more of them, and they keep you alert. But also, who doesn’t love a good alien? We all want to meet the aliens. So, when I think of these forces that rise up in the storyt…
15 Experiences You Have As You Get Richer
Your journey through life grows richer as your pockets do. More money means unlocking new levels of experiences and adventures. It’s not just about having fancy stuff; it’s about the unique, amazing things you get to do and see. Here are 15 experiences yo…
Khan Academy India Talent Search 2016
Hi, I’m Sal Khan, founder of the Khan Academy, and I just want to let you know about our India Talent search. As you might know, Khan Academy is a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. To us, that m…
Ultimate Guide to GTD in 2022: Amplenote Edition
So in today’s video we’re going to be exploring the best ways to implement getting things done or GTD for short in 2022. Do not worry if you have not yet read the book or heard about the book; we’re going to look at why these Concepts work and how to help…
What skills you need to sell private jets.
Everybody asks what kind of skill sets they need to get into selling jets and how they can get into this business. First of all, you have to have passion for aviation. You have to really have it in your blood, as far as I’m concerned. Really, watching ai…