yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proving the SAS triangle congruence criterion using transformations | Geometry | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is see that if we have two different triangles and we have two sets of corresponding sides that have the same length. For example, this blue side has the same length as this blue side here, and this orange side has the same length as this orange side here.

And the angle that is formed between those sides, so we have two corresponding angles right over here that they also have the equal measure. So we could think about we have a side, an angle, a side, a side, an angle, and a side. If those have the same lengths or measures, then we can deduce that these two triangles must be congruent by the rigid motion definition of congruency.

Or the shorthand is if we have side angle side in common and the angle is between the two sides, then the two triangles will be congruent. So to be able to prove this, in order to make this deduction, we just have to say that there's always a rigid transformation if we have a side angle side in common that will allow us to map one triangle onto the other.

Because if there is a series of rigid transformations that allow us to do it, then by the rigid transformation definition the two triangles are congruent. So the first thing that we could do is we could reference back to where we saw that if we have two segments that have the same length like segment AB and segment DE.

If we have two segments with the same length, then they are congruent. You could always map one segment onto the other with a series of rigid transformations. The way that we could do that in this case is we could map point B onto point E. So this would be now I’ll put B prime right over here.

And if we just did a transformation to do that, so if we just did it, if we just translated like that, then side—oops—then side would that orange side would be something like that. But then we could do another rigid transformation that rotates about point E or B prime that rotates that orange side and the whole triangle with it onto DE.

In which case, once we do that second rigid transformation, point A will not coincide with D, or we could say A prime is equal to D. But the question is, where would C now sit? Well, we can see the distance between A and C. In fact, we can use our compass for it. The distance between A and C is right, is just like that.

And so, since all these rigid transformations preserve a distance, we know that C prime, the point that C gets mapped to after those first two transformations, C prime, its distance is going to stay the same from A prime. So C prime is going to be someplace along this curve right over here.

We also know that the rigid transformations preserve angle measures and so we also know that as we do the mapping, the angle will be preserved. So either side AC will be mapped to this side right over here. And if that's the case, then F would be equal to C prime, and we would have found our rigid transformation based on SAS.

And so, therefore, the two triangles would be congruent. But there's another possibility that the angle gets conserved but side AC is mapped down here. So there's another possibility that side AC, due to our rigid transformations or after our rigid—the first series set of rigid transformations, it looks something like this.

So it looks—it looks something like that, in which case C prime would be mapped right over there. And in that case, we can just do one more rigid transformation. We can just do a reflection about DE or A prime B prime to reflect point C prime over that to get right over there.

How do we know that C prime would then be mapped to F? Well, this angle would be preserved due to the rigid transformation. So as we flip it over, as we do the reflection over DE, the angle would be preserved and A prime C prime will then map to DF.

And then we'd be done. We will—we have to show that there's always a series of rigid transformations as long as you meet this SAS criteria that can map one triangle onto the other, and therefore they are congruent.

More Articles

View All
Chamath Palihapitiya: The #1 Secret to Becoming Rich
Slow and steady against hard problems. Start by turning off your social apps and giving your brain a break because then you will at least be a little bit more motivated to not be motivated by what everybody else [__] thinks about you. I saw some of the v…
The Cure To Laziness (This Could Change Your Life) | Marcus Aurelius | Stoic | Stoicism
[Music] In the heart of a bustling city, a single decision by Marcus Aurelius over 2,000 years ago still echoes. The profound impact of stoic philosophy on our lives today is immense. This ancient wisdom teaches us not just to endure life’s storms, but to…
Cosplay, ILLUSIONS, and Pacman: IMG! 7
If Pac-Man was a real living organism and party time—wait, what? [Music] We start today like I start every day, wrapped up in covers. Oopah brought us some great bedspreads. This one would make me feel less lonely. This one’s great for parties, and this…
Peter Reinhardt on Finding Product Market Fit at Segment
The average person probably doesn’t know what Segment is. Mm-hmm. So could you explain? For sure. So Segment helps companies give their customers a better customer experience, and we do that by helping them organize all of their internal data about all t…
Operation Royal Wedding: St. George’s Chapel | National Geographic
Inside the jaw-dropping splendor of Windsor Castle, St. George’s Chapel is undergoing preparations for Prince Harry and Megan Marko’s nuptials. Charlotte Manley is responsible for the smooth running of the chapel, which, despite its age and grandeur, is v…
What is an argument? | Reading | Khan Academy
Hello readers! Today we shall take the field in rhetorical combat, also known as argument. Argument is when an author wants to convince you of their position. This is my position: you should share this position, and here is why. Argument does not sneak. …