yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding mistakes in one-step equations | 6th grade | Khan Academy


3m read
·Nov 10, 2024

We're told that Lisa tried to solve an equation: see, 42 is equal to 6a, or 6 times a. Then we can see her steps here, and they say where did Lisa make her first mistake. So pause this video and see if you can figure that out. It might be possible she made no mistakes.

All right, well we know she ends up with seven equals six, which is sketchy. So let's see what happened here. So right over here, it looks like, well, she did something a little bit strange. She divided the left-hand side by 6 and the right-hand side by a. You don't want to divide two sides of an equation by two different things. Then it's no longer going to be an equation; the equality won't hold. An algebraically legitimate thing is to do the same thing to both sides, but she didn't do it here. So this is where she made her first mistake.

Let's give another example here. So here it says that Jin tried to solve an equation: all right, x plus 4.7 is equal to 11.2. Where did Jin make his first mistake? Pause this video and try to figure it out.

All right, so it looks like in order to isolate the x on the left-hand side, Jin is subtracting 4.7 from the left, and then also subtracting 4.7 from the right, so that is looking good: doing the same thing to both sides, subtracting 4.7 from both sides. Then over here on the left-hand side, these two would cancel, so you'd be left with just an x.

And let's see, 11.2 minus 4.7: 11.2 minus 4 would be 7.2, and then minus the 0.7 would be 6.5. So this is where Jin made his mistake on the calculating part.

Let's do another example; this is a lot of fun. So here we are told that Marina tried to solve an equation, and we need to figure out where Marina made her first mistake. All right, 1/6 is equal to two-thirds y.

So the first step, or the first thing that Marina did right over here is to multiply both sides of this equation by the reciprocal of two-thirds, which is three-halves. She multiplied the left-hand side by three-halves, multiplied the right-hand side by three-halves, which is a very reasonable thing to do: we’re doing the same thing to both sides, multiplying by three-halves.

Then when we go over here, let's see: three-halves times one-sixth, we could divide the numerator and the denominator by three, so it's going to be one over two. So that indeed is going to be one-half times one-half, which is one-fourth, so that checks out.

And on this side, if you multiply three-halves times two-thirds, that's going to be one, so this checks out. So it actually looks like Marina did everything correctly: no mistake, no mistake for Marina.

Let's do one last example. So here, Taylor is trying to solve an equation, and so where did Taylor first get tripped up? n minus 2.7 is equal to 6.7.

In order to isolate this n over here, I would add 2.7 to both sides, but that's not what Taylor did. Taylor subtracted 2.7 from both sides. So the first place that Taylor starts to trip up or move in the wrong direction is right over here.

Now what Taylor did is not algebraically incorrect; you would end up with n minus 5.4 is equal to 4. But it's not going to help you solve this equation. You just replace this equation with another equivalent equation that is no simpler than the one before. And then, of course, instead of getting n minus 5.4 equals four, Taylor calculated incorrectly as well.

But where they first started to get tripped up, or at least not move in the right direction, would be right over here.

More Articles

View All
Explorers Festival, Thursday June 15 | National Geographic
from a distance it always seems impossible. But impossible is just a place we haven’t been to yet. Impossible is what beckons us to go further, to explore. It calls us from the wild, lures us into the unknown, asks us to dig deeper, to look at things from…
Evidence for evolution | Common ancestry and phylogeny | High school biology | Khan Academy
We’ve done many videos on Khan Academy on evolution and natural selection explaining them, but I thought I would do a video going a little bit more in-depth in evidence for evolution and natural selection. I starting with this quote: “Nothing in biology m…
If You’re So Smart, Why Aren’t You Happy?
A common complaint where I’m from, where I’m surrounded by lots of smart overachievers, is that happiness is for stupid people or happiness is for lazy people. A lot of times, it’s not. Runners will say, “I don’t want to be happy because I want to be succ…
Mariya Nurislamova, Founder of Scentbird at the Female Founders Conference
Really bright and sunny today. I can’t unsee the slides, but I guess that’s okay. Hi everyone, my name is Maria. For the past four and a half years, I’ve been building a company called Sunbird. Sunbird is a fragrance subscription service, and we help peop…
Subject, direct object, and indirect object | Syntax | Khan Academy
Hello Chrome, Mary, and hello Rosie. Hi David! So, today we’re going to be talking about subject, direct object, and indirect object, identifying those within a sentence. But first, I suppose we should figure out what those things are. So, we’ve talked a…
Dostoevsky - Never Lie to Yourself
In The Brothers Karamazov, Fyodor Dostoevsky wrote, “Above all, don’t lie to yourself. The man who lies to himself and listens to his own lie comes to a point that he cannot distinguish the truth within him, or around him, and so loses all respect for him…