yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Zeros of polynomials: matching equation to zeros | Polynomial graphs | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

  • A polynomial P has zeros when X is equal to negative four, X is equal to three, and X is equal to one-eighth. What could be the equation of P? So pause this video and think about it on your own before we work through it together.

All right. So the fact that we have zeros at these values, that means that P of X, when X is equal to one of these values, is equal to zero. So P of negative four is equal to zero, P of three is equal to zero, and P of one-eighth is equal to zero.

And before I even look at these choices, I could think about constructing a polynomial for which that is true. That's going to be true if I can express this polynomial as the product of expressions where each of these would make each of those expressions equal to zero. So what's an expression that would be zero when X is equal to negative four?

Well, the expression X plus four, this is equal to zero when X is equal to negative four, so I like that. What would be an expression that would be equal to zero when X is equal to three? Well, what about the expression X minus three? If X is equal to three, then this is going to equal to be equal zero. Zero times anything is going to be equal to zero. So P of three would be zero in this case.

And then what is an expression that would be equal to zero when X is equal to one-eighth? Well, that would be X minus one-eighth. Now tho-- these aren't the only expressions. You could multiply them by constants and still the principles that I just talked about would be true.

But our polynomial would look something like this. You could try it out. If X is equal to negative fou-- (chuckles) if X is equal to negative four, well then this first expression is zero. Zero times something times something is zero. Same thing for X equals three. If this right over-- If X equals three, then X minus three is equal to zero, and then zero times something times something is zero.

And then if X is equal to one-eighth, this expression's going to be equal to zero. Zero times something times something is going to be equal to zero. So which of these choices look like that? So let's see. X plus four, I actually see that in choices B, and I see that in choices D.

Choice C has X minus four there. So that would have a zero at X equals four. If X equals four, this first-- this first expression-- this first part of the expression would be equal to zero. But we care about that happening when X is equal to negative four. So I would actually rule out C, and then for the same reason, I would rule out A.

So we're between B and D, and now let's see. Which of these have an X minus three in them? Well, I see an X minus three here. I see an X minus three there. So I like the-- I still like B and D. I'll put another check mark right over there.

And then last but not least, which of these would be equal to zero when X is equal to one-eighth? Well, let's see. If I do one-eighth times one-eighth here, I'm gonna get one-sixty-fourth for this part of the expression. And so that's not going to be equal to zero.

And these other two things aren't going to be equal to zero when X is equal to one-eighth, so this one is not looking so good, but let's verify this one. This has-- If X is equal to one-eighth, we have eight times one-eighth which is one, minus one. That is going to be equal to zero, so this one checks out.

And you might be thinking hey! This last polynomial looks a little bit different than this polynomial that I wrote up here when I just tried to come up with a polynomial for which this would be true. And as I mentioned, you could take this and multiply it by constants and it would still be true.

So if you just take this, and if we were to multiply it by eight, you would get P of X down here, because if we were to multiply this times eight, which wouldn't change the zeros, well then if you distribute this eight, this last expression would become eight X minus one. Which is exactly what we have down here.

More Articles

View All
The Compound Effect: How Small Decisions Lead to Massive Growth
Have you ever felt helpless when you work on your business every day and see little to no return? Then one day, suddenly you make a huge profit, and your business skyrockets from that point? That’s The Compound Effect in action, one of the most powerful f…
The Aztecs: From Empire to A.I. | Podcast | Overheard at National Geographic
So we’re in a village in rural Mexico, about a day’s drive from Mexico City. You can hear music emanating from a little house that has a thatched roof, but inside, that’s where the action is. There’s a ceremony going on. The rituals often take place in li…
Colonizing Mars | StarTalk
So let’s go piece by piece. One-way mission with people who would just agree to go one way, and he sends supplies in advance. There’s going to set up Hab modules. I’ve got an image of what his Hab modules would look like on Mars. I think we can put it up …
How AIs, like ChatGPT, Learn
On the internet, the algorithms are all around you. You are watching this video because an algorithm brought it to you (among others) to click, which you did, and the algorithm took note. When you open the TweetBook, the algorithm decides what you see. Wh…
Ideology and policymaking | AP US Government and Politics | Khan Academy
Let’s take a look at this chart based on survey data from the Pew Research Center. Researchers asked U.S. adults in early 2020 which issues they think should be top priorities for the President and Congress. The top two issues were the economy and the env…
Connecting f, f', and f'' graphically (another example) | AP Calculus AB | Khan Academy
We have the graph of three functions here, and we’re told that one of them is the function ( f ), one is its first derivative, and then one of them is the second derivative. We just don’t know which one is which. So, like always, pause this video and see …