yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Quadratic systems: a line and a parabola | Equations | Algebra 2 | Khan Academy


4m read
·Nov 10, 2024

We're told the parabola given by ( y = 3x^2 - 6x + 1 ) and the line given by ( y - x + 1 = 0 ) are graphed.

So you can see the parabola here in red and we can see the line here in blue. The first thing they ask us is, one intersection point is clearly identifiable from the graph. What is it? They want us to put it in here.

This is actually a screenshot from the exercise on Khan Academy, but I'm just going to write on it. If you're doing it on Khan Academy, you would type it in, but pause this video and see if you can answer this first part.

All right, so one intersection point is clearly identifiable from the graph. I see two intersection points. I see that one and I see that one there. This second one seems clearly identifiable because when I look at the grid, it looks clearly to be at a value of ( x = 2 ) and ( y = 1 ). It seems to be the point ( (2, 1) ).

So it's ( (2, 1) ) there. What's interesting about these intersection points is, because it's a point that sits on the graph of both of these curves, that means that it satisfies both of these equations, that it's a solution to both of these equations.

So the other one is to find the other intersection point. Your answer must be exact. So they want us to figure out this intersection point right over here. Well, to do that, we're going to have to try to solve this system of equations.

This is interesting because this is a system of equations where one of the equations is not linear; it is a quadratic. So let's see how we could go about doing that.

Let me write down the equations. I have ( y = 3x^2 - 6x + 1 ) and our next equation right over here, ( y - x + 1 = 0 ).

Well, one way to tackle, and this is one way to tackle any system of equations, is through substitution. So if I can rewrite this linear equation in terms of ( y ), if I can solve for ( y ), then I can substitute what ( y ) equals back into my first equation, into my quadratic one, and then hopefully I can solve for ( x ).

Let's solve for ( y ) here. Actually, let me color code it because this one is in red and this one is the line in that blue color. So let's just solve for ( y ). The easiest way to solve for ( y ) is to add ( x ) to both sides and subtract ( 1 ) from both sides.

That was hard to see, so we subtract ( 1 ) from both sides, and so we are going to get ( y ) and then all the rest of the stuff cancels out, is equal to ( x - 1 ).

Now we can substitute ( x - 1 ) back in for ( y ), and so we get ( x - 1 = 3x^2 - 6x + 1 ). Now we want to get a ( 0 ) on one side of this equation, so let's subtract ( x ). I'll do this in a neutral color now.

Let's subtract ( x ) from both sides and let's add ( 1 ) to both sides. Then what do we get? On the left-hand side, we just get ( 0 ), and on the right-hand side, we get ( 3x^2 - 7x + 2 ). So this is equal to ( 0 ).

Now we could try to factor this. Let's see, is there an obvious way to factor it? Can I think of two numbers ( a \times b ) that's equal to the product of ( 3 ) and ( 2 )? Three times two.

If this looks unfamiliar, you can review factoring by grouping. Can I think of those same two ( a + b ) where it's going to be equal to ( -7 )? Actually, ( -6 ) and ( -1 ) work.

So what I can do is I can rewrite this whole thing as ( 0 = 3x^2 ) and then instead of ( -7x ), I can write ( -6x - x ), and then I have my ( +2 ).

I'm just factoring by grouping. For those of you who are not familiar with this technique, you could also use a quadratic formula. So then ( 0 = 3x ) times ( x - 2 ).

In these second two, I can factor out ( -1 ), so I have ( -1 ) times ( x - 2 ).

Then I can factor out a ( -2 ). I'll scroll down a little bit so I have some space.

So I have ( 0 = ) if I factor out ( (x - 2) ), I'm going to get ( (x - 2)(3x - 1) ). So a solution would be a situation where either of these is equal to zero.

Or I'll scroll down a little bit more. So ( x - 2 ) could be equal to ( 0 ) or ( 3x - 1 ) is equal to ( 0 ). The point where ( x - 2 = 0 ) is when ( x = 2 ).

And for ( 3x - 1 = 0 ), add ( 1 ) to both sides, you get ( 3x = 1 ) or ( x = \frac{1}{3} ).

So we figured out the— we already saw the solution where ( x = 2 ). That's this point right over here; we already typed that in. But now we figured out the ( x ) value of the other solution, so this is ( x = \frac{1}{3} ) right over here.

So our ( x ) value is ( \frac{1}{3} ), but we still have to figure out the ( y ) value. Well, the ( y ) value is going to be the corresponding ( y ) we get for that ( x ) in either equation.

And I like to focus on the simpler of the two equations so we can figure out what is ( y ) when ( x = \frac{1}{3} ).

Using this equation, we could have used the original one, but this is even simpler; it's already solved for ( y ). So ( y = \frac{1}{3} - 1 ).

I'm just substituting that ( \frac{1}{3} ) back into this, and so you get ( y = -\frac{2}{3} ). And it looks like that as well.

( y = -\frac{2}{3} ) right over there. So this is the point ( \left( \frac{1}{3}, -\frac{2}{3} \right) ) and we're done.

More Articles

View All
Don Cheadle Visits Central Valley | Years of Living Dangerously
The episode that we’re shooting now is about California and how we’re seeing the effects of climate change here dramatically, with temperatures rising and the U.S. losing the snowpack. How that is having an effect on water specifically, and how the lack o…
15 Rules To Win At Life (Part 1)
Life is a complicated game filled with moving pieces, changing environments, changing rules, and unfortunately, it doesn’t come with a rule book. So, we asked ourselves, what would be the common traits and patterns shared by hundreds of people who we beli…
Predatory lending | Loans and debt | Financial Literacy | Khan Academy
So let’s talk a little bit about predatory lending. As the word “predatory” seems to imply, it sounds like something that you want to be very careful about how you engage in it. Generally speaking, a predatory lender is someone who is maybe using someone…
Musical Fire Table!
Just press play, you mean? [Voiceover] Yeah, go for it. Whoa! [Music] Now, you may have seen a Ruben’s tube before. That’s basically a pipe with a bunch of holes in it, and you pump in a flammable gas and light it on fire, so you basically create a row …
Why We Aren't Who We Are | The Tragedy Of Being What You Can't Define
“Trying to define yourself is like trying to bite your own teeth.” Alan Watts. In today’s society, we are expected to define who we are and take that self-image as a basis for making life decisions. For example: I’m an introvert, and from that point of vi…
Potting Chestnuts | Live Free or Die: How to Homestead
[Music] Today I’m going to show you how to move these germinating Chestnut seeds to another location that’s more conducive to growing them out to maturity. This is optimum size for planting. Once they get this big, they get to be kind of unruly. But, um, …