yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Michio Kaku: Space Bubble Baths and the Free Universe | Big Think


4m read
·Nov 4, 2024

We have found the Higgs boson. So then the next question is what's next? Well, the Large Hadron Collider, this machine that is 27 miles in circumference, costing 10 billion dollars, is big enough to create the next generation of particles.

So, the Higgs boson, in some sense, is the last hurrah for the old physics, the old physics of what is called the standard model, which gives us quarks and electrons. The new theory is going to take us into dark matter. Now we know dark matter exists. Dark matter is invisible, so if I held it in my hand, you wouldn't see it.

In fact, it would go right through my fingers, go right through the rock underneath my feet, and go all the way to China. It would reverse direction and come back from China all the way here to New York City and go back and forth. So dark matter has gravitational attraction, but it is invisible, and we are clueless as to what dark matter really is.

The leading candidate for dark matter today is called the sparticle. The sparticle is the next octave of the string. Now look around you. Everything around you, we think, is nothing but the lowest vibration of a vibrating string, the lowest octave in some sense, but a string of course has higher octaves, higher notes.

We think that dark matter could, in fact, be nothing but a higher vibration of the string. So we think that 23% of the universe, which is the dark matter's contribution to the universe, comes from a higher octave of the string. Now the standard model, which we have ample verification of, only represents four percent of the universe.

So the universe of atoms, protons, neutrons, neutrinos - that universe only represents four percent of what there is. 23% is dark matter, which we think is the next vibration up of the string, and then 73% of the universe is dark energy. Dark energy is the energy of nothing.

It's the energy of the vacuum. Between two objects in outer space, there is nothing, nothing except dark energy, dark energy, which is pushing the galaxies apart. So when people say if the universe is expanding, they say two things: what's pushing the galaxies apart and what is the universe expanding into?

Well, what's pushing the galaxies apart is dark energy, the energy of nothing. Even vacuum has energy pushing the galaxies apart. And then what is the universe expanding into? Well, if the universe is a sphere of some sort and we live on the skin of the sphere and the sphere is expanding, what is the sphere expanding into?

Well, obviously a bubble, a balloon expands into the third dimension even though the people living on the balloon are two-dimensional. So when our universe expands, what does it expand into? Hyperspace, a dimension beyond what you can see and touch.

In fact, string theory predicts that there are 11 dimensions of hyperspace, so we're nothing but a soap bubble floating in a bubble bath of soap bubbles, and so in some sense, the multiverse can be likened to a bubble bath. Our universe is nothing but one bubble, but there are other bubbles.

When two bubbles collide, that could merge into a bigger bubble, which could be the big bang. In fact, that is what probably the big bang is, or perhaps a bubble fissioned in half and split off into two bubbles. That could be the big bang. Or perhaps the universe popped into existence out of nothing.

That is also a possibility. And so the universe could essentially be nothingness, which was unstable and created a soap bubble. Now you may say to yourself, well that can't be right because that violates the conservation of matter and energy. How can you create a universe from nothing?

Well, if you calculate the total matter of the universe, it is positive. If you calculate the total energy of the universe, it is negative because of gravity. Gravity has negative energy. When you add the two together, what do you get? Zero, so it takes no energy to create a universe. Universes are for free.

A universe is a free lunch. And then you may say to yourself, well that can't be right because positive and negative charges don't cancel out, therefore, how can the universe be made out of nothing? Well, if you calculate the total amount of positive charge in the universe and calculate the total amount of negative charge in the universe and you add it up, what do you get? Zero, the universe has zero charge.

Well, what about spin? Galaxies spin, right? But they spin in all directions. If you add up all the spins of the galaxies, what do you get? Zero. So, in other words, the universe has zero spin, zero charge, and zero matter energy content.

In other words, the universe is for free.

More Articles

View All
Four factors of production | AP Microeconomics | Khan Academy
An idea that will keep coming up as you study economics is the idea of the four factors of production, which are usually listed as land, labor, capital, and entrepreneurship. The idea here is if you want to produce anything, so let’s just say this circle …
Which credit card is better for you? | Consumer credit | Financial Literacy | Khan Academy
And now we are going to play the game: which credit card is better for you? The reason why I’m saying “for you” is because, in many cases, one credit card could be better than another person depending on how they plan on using it. So pause this video and …
Establishing DNA as transformation principle
So to review how we got at least to this video: in 1865, Mendel first shares his laws of inheritance. He observes that there are these heritable factors, these discreet heritable factors that would be passed down from parent to offspring according to cert…
Introduction to verb tense | The parts of speech | Grammar | Khan Academy
Hello grammarians! Today, I want to introduce the idea of the verb tense. The way I want to do that is to express the following: if you can master grammatical tenses, you will become a time wizard—a literal, actual time wizard. Because tense is nothing mo…
How Politicians Keep Getting So Rich
This is Representative Alan Lowenthal, a Democrat in California. He sits on the House Committee on Transportation and Infrastructure, which on the 6th of March 2020 released this report detailing the preliminary findings from an investigation into the Boe…
How to Invest for an 8% Return
What’s up you guys? It’s Graham here. So, probably one of the most common critiques I get in my videos is it’ll often assume and base my calculations off of an 8 percent return. And probably one of the most common comments that get in response to this is,…