yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Approximating asymptotic limit from table


4m read
·Nov 11, 2024

Function f is defined over the real numbers. This table gives a few values of f.

So when x is equal to -4.1, f of x is 5. f of -4.01 is 55. They give us a bunch of values for different x's of what f of x would be. What is a reasonable estimate for the limit as x approaches -4 of f of x?

So, let's think about what's happening. To think of a reasonable estimate for the limit as x approaches -4, we'd want to consider what it looks like the function is approaching as x approaches -4 from values less than -4. So that's what we have here on the table. Then we'd also want to think about, well, what does it look like our function is approaching as x approaches -4 from values greater than -4, from the right?

This is what f of x approaches as x approaches -4 from the left. This is what f of x is approaching as x approaches -4 from the right. So, let's think about it. When x is -4.1, we're at 5. Then we're at -4.1, we go to -55. And then when we get to -4.001, so we're only a thousandth away from -4, we get to 555. So this just seems to get larger and larger.

Then at -4, it's 5,555. So this is interesting; there could be a scenario where this is getting more and this is getting infinitely negative as we get close to -4, and then jumps back up to 5,555. Or this is a situation where we are at -4 or we're just kind of approaching this value right over here. It's unclear based on the information in the table.

Now, let's think about what's happening as we approach from the right. So at -3.9, we're at 53.99, then we're at 55. As we go to -3.9, we go to 555. So this seems to be getting larger. As we get closer and closer to -4, as x gets closer and closer to -4 from the right, it looks like f of x is getting larger and larger.

It's not going more and more negative. So, as I mentioned, if you wanted to think about scenarios of what might be happening here, and we don't know for sure because remember when we're using a table, we're just taking samples.

So, let me draw what could be happening here. Once again, we don't know for sure just by sampling, but once again, they just want us to get a reasonable estimate. So that's the x-axis, and that is the y-axis. We care about x = -4. So let's say that this is x = -4 right over here.

There are a couple of scenarios. There's one scenario where it's doing something like this, where it's just going to negative 5,555 (this isn't at the same scale). So there's this scenario where this right over here is -5,555. But then from the right, you're doing something completely different; you're going in the opposite direction.

So from the right, it looks like this; you're just getting larger and larger. As you get closer and closer to -4 from the right, maybe you're going to positive infinity, or maybe you're going to… well, we don't know. Based on this data, it looks like it could just be going unbounded to positive infinity.

Then right at -4, you go to 5,555. In this situation, you would have no limit at x = -4, even though the function is defined there. You would have no limit because when you approach from the right, you're going to positive infinity, while when you approach from the left, you're either going to negative infinity or you're going to the value 5,555.

Another scenario that might be happening as we approach from the left might be something like this; it might be approaching negative infinity, and then you just jump back up to this value right over here. So let me erase this one just so you can see what I'm talking about.

So this is another scenario that right at -4; from either side, it looks like you have an asymptote going on. From either side, you have this vertical asymptote right over here. So, as you approach from the left, you're going to negative infinity. As you approach from the right, you're going to positive infinity. But right at -4, you're defined at this value.

So this is another possibility, but in this case as well, there's no limit here. You're not approaching the same finite value from both sides. Now, one thing that you'll sometimes see is if people think that, okay, if you’re approaching the same, you know, either from both sides, you're approaching positive infinity, or from both sides you're approaching negative infinity. Sometimes people say, "Oh, my limit is infinity," or "my limit is negative infinity."

So let's say you have a situation like this where at some value, you're thinking about the limit as you approach as x approaches that value. As you approach from either side, you're going to positive infinity. Well, formally, you still wouldn't say the limit is infinity because a limit, formally, is a finite value that you are actually approaching.

So, in any of these scenarios, especially the scenario that we see here where you're going to positive infinity here, negative infinity here, or you're going to 5,555 here, the limit does not exist. So let me just circle that.

More Articles

View All
Hypothesis test for difference in proportions | AP Statistics | Khan Academy
We’re now going to explore hypothesis testing when we’re thinking about the difference between proportions of two different populations. So here it says, here are the results from a recent poll that involved sampling voters from each of two neighboring d…
CREEPY WOODY !!! -- IMG! #31
Creepy Woody and this place is great for kids. Wait… It’s episode 31 of IMG! Parents are awesome, except when they play favorites. And here’s Bert in real life. There won’t be any cats in this episode, but there will be zombie jean shorts, rigor mortis gi…
Interpret quadratic models: Vertex form | Algebra I | Khan Academy
We’re told that Taylor opened a restaurant. The net value of the restaurant, in thousands of dollars, two months after its opening is modeled by ( v(t) = 2t^2 - 20t ). Taylor wants to know what the restaurant’s lowest net value will be. Let me underline t…
Consumer credit unit overview | Teacher Resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on consumer credit. So, just as a high level, this is going to cover everything from credit scores—what is it? How it’s able to give people who might give someone credit a sense of how likely you are to pay back that cred…
Remove the Dams to Save the Salmon? | Short Film Showcase
[Music] [Music] If you think about the way a river works in a landscape, it essentially functions as the circulatory system. It drains the waste products off of the land, and that sediment is the stuff that basically structures habitat in rivers. Then, on…
Rainn Wilson Rappels Across a Ravine | Running Wild with Bear Grylls
RAINN: I guess I just, I’m gonna step off the edge. BEAR: Okay, Rainn. I’m not entirely sure how strong these ropes are, so just ease yourself off it. BEAR (off-screen): Actor Rainn Wilson and I are only a few miles from our extraction point. But a deep r…