yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Interpreting trigonometric graphs in context | Trigonometry | Algebra || | Khan Academy
We’re told Alexa is riding on a Ferris wheel. Her height above the ground in meters is modeled by ( h(t) ), where ( t ) is the time in seconds, and we can see that right over here. Now, what I want to focus on in this video is some features of this graph.…
Absurdism: Life is Meaningless
Sisyphus was a great king of Greek mythology. So clever, he was able to outwit the gods themselves. Twice he cheated death; first by capturing Thanatos, the god of death, then by tricking the goddess of the underworld, Persephone, into releasing him back …
Death
To everything there is a season, a time to be born and a time to die. For some, it’s Grandma or Grandpa. For others, it’s Mom or Dad. For some, it’s a brother, a sister, a friend, or a lover. Whoever it is, whenever it is, one thing is for sure: at some p…
BEST IMAGES OF THE WEEK: IMG! episode 4
A family photo that’s not at all creepy, except for that guy. Super Mario Brothers turns 25 years old today. It’s Episode Four of IMG. Today, Kotaku brought us the 10 most bizarre iPad mods: a USB typewriter, an iPad arcade, and even an iPad skateboard. …
How Much I Make With 2 Million Subscribers
What’s up you guys! It’s Graham here. So, after nearly four years of making videos here on YouTube, I’m gonna break down exactly how much I make with a channel of about two and a half million subscribers. Because recently, I wouldn’t even believe it myse…
Decomposing shapes to find area (grids) | Math | 3rd grade | Khan Academy
Each small square in the diagram has a side length of one centimeter. So, what is the area of the figure? We have this figure down here in blue, and we want to know its area. Area is the total space it covers, and we’re also told that each of these little…