yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Writing expressions with parentheses | 6th grade | Khan Academy
We have two different statements written in English that I would like you to pause this video and try to write as an algebraic expression. All right, now let’s work on this first one. So you might be tempted to say, “All right, I have five, so let me jus…
Held at gunpoint while selling a private jet!
The first jet I ever sold in my life, I was held at gunpoint three feet away from me. It’s a long story. The first time I saw the jet, I was 23 years old. I flew to America, to North Carolina. We were signing a deal with the Venezuelan buyer. He had two …
Akiva Goldsman on the Creative Process | Breakthrough
I think the creative process is actually very similar whether it be math, science, music, or art. I’m more familiar with the dredging of the ether for a sentence or two, and I like it, but it is an act of sheer faith. It is an act of propulsion into some …
Consume Information That Encourages You To Do More - Dalton Caldwell
You want to really think about what kind of information you’re consuming and will be very thoughtful that it’s information that encourages you to do more and to actually work on the thing you’re aspiring to do. And that isn’t implicitly discouraging. Righ…
15 Ways Technology Is Going to Disrupt the Financial Industry
Disruption is great. The drastic changes are scary, sure. But when you’re prepared for them, then you can ride that wave all the way to the top. The world of banking and finance is shifting into a totally new dimension, and knowledge gets you ahead of eve…
Ask me anything with Sal Khan: March 27 | Homeroom with Sal
Hi everyone! Welcome to our daily live stream. This is why we’ve almost, we’ve been doing this for a little bit over two weeks. For those of you all who are new to this, the whole point of this is Khan Academy is a not-for-profit with a mission of providi…