yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Calculations using Avogadro's number (part 2) | Chemistry | Khan Academy
Let’s solve a few numerical on Avogadro number and moles. Here’s the first one: how many glucose molecules are in 2.37 moles of glucose? Let’s quickly remind ourselves what moles are. Moles are like dozens. Just like how one dozen equals 12, a mole repre…
How Cape Town's Residents Are Surviving the Water Crisis—For Now | National Geographic
Cape Town is facing an unprecedented ecological crisis, never before in the history of the modern world, as a whole city of this kind is threatened to run out of water for its citizens completely. Cape Town residents have been told not to use more than 50…
When Sex Turns Lethal | Original Sin: Sex
In modern day Monaco, if you want to get married, you need to post a written announcement on the town hall for 10 days. Across the globe, governments love to legislate who can and can’t get married for reasons of control, paranoia, or fear. Scientists at …
Building Confidence In Yourself and Your Ideas
They will take something, you know, Anonymous arvar 42 said, as like gospel and base their entire life philosophy around it. Yes, yes, don’t do that. Don’t do that. All right, welcome to Dton Plus, Michael, and today we’re going to talk about how fast is …
Separate Boys From Men | Wicked Tuna: Outer Banks
It’s untie and get out of here. Oh yeah, slow right down, Tyler. You’re gonna snap your welds right off. Yeah, getting everything ready now. We’re not done. Yeah, our green stick is so tall we have to lower it to get underneath the bridge, but now we’r…
The Simple Guide To Start Anything
If you want to start a podcast, or write a book, or make a game, or build an app, or start any kind of business, well, where do you actually start? What’s the first thing, and what’s the last thing you do? There’s almost 8 billion people on this planet, a…