yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
15 Things That Are Not Missing From a Rich Person’s Home
Here is something you didn’t know. The inside of a rich person’s house is usually more expensive than the acquisition price of the property, or it’s at least coming close. When you think about rich people’s homes, you probably picture gold-plated everyth…
A Tale of Two Credit Scores | Teacher Resources | Financial Literacy | Khan Academy
[Music] Con Academy proudly presents a tale of two credit scores. This is Jana. Hi! And this is Bob. Good morning! Narrator: Hi Bob! These two charming characters are co-workers, each with the same job and salary. They both need a vehicle, so they’ve tr…
What If Earth got Kicked Out of the Solar System? Rogue Earth
The night sky seems peaceful and orderly, but in reality, stars are careening through the galaxy at speeds of hundreds of thousands of kilometers per hour, not bound by static formations but changing neighborhoods constantly. Fortunately, space is big, an…
Gideon v Wainwright
[Instructor] Now we’re gonna talk about an important Supreme Court case that reinforced the idea that states have to provide the same rights when people are arrested and accused of a crime, as are guaranteed in the United States Constitution. And that c…
Residual plots | Exploring bivariate numerical data | AP Statistics | Khan Academy
What we’re going to do in this video is talk about the idea of a residual plot for a given regression and the data that it’s trying to explain. So right over here we have a fairly simple least squares regression. We’re trying to fit four points. In previ…
Pessimism Appears to Be the Intellectually Serious Position
If you’re an academic of some kind, then being able to explain all of the problems that are out there and how dangerous these problems are, and why you need funding in order to look at these problems in more depth, that appears to be the intellectually se…