yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
2020 Berkshire Hathaway Annual Meeting (Full Version)
Well, it’s uh 3:45 in Omaha, and this is the annual meeting of Berkshire Hathaway. It doesn’t look like an annual meeting; it doesn’t feel exactly like an annual meeting, and it particularly doesn’t feel like an annual meeting because, uh, my partner 60 y…
Mr. Freeman, part 24
… Not bad … But I did not say that money is a bad thing. I respect every religion … as servile, as it is. Oh … yes … you do not know … Only calm down, stop splashing with your spinal cord. MONEY IS GOD. And you believe religion is Christianity, Buddhism,…
Safari Live - Day 269 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello and good afternoon and welcome to the sunset Safari where I’ve got some very exciting news and I will tell you…
Top 5 Stocks the Smart Money is Buying for the 2023 Recession
Well, as you guys saw from my last video, once again it is 13F season. So, in this video, we’re going to be looking at the five most bought stocks by our 77 super investors in Q1 of 2023, as of course tracked by Dart Aroma. Now, before we get started, ri…
Teach Yourself a Language in 15 Minutes a Day: Step-by-Step Demonstration
Hello everybody. This video is a direct follow-up to the previous one in which I mentioned that it was possible to learn a language by studying 15 minutes a day every day systematically in about the course of a year. So, uh, one person put in the comments…
Finding Something to Live and Die For | The Philosophy of Viktor Frankl
“The meaning of life is to give life meaning.” What keeps a human being going? The purest answer to this question is perhaps to be found in the worst of places. Austrian psychiatrist, philosopher, and author Viktor Frankl spent three years in four differe…