yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Homeroom with Sal & Lindsay Spears - Monday, June 22
Hi everyone! Welcome to the daily homeroom. It’s been a little bit of a while. We took a week-long break last week, so hopefully, everyone is doing well. For those of you who are new to this, this is something we started doing when we started seeing the …
LearnStorm Growth Mindset: Dancer on his career journey
My name is Michael Novak. I’m 34 years old, and I’m a dancer with the Paul Taylor Dance Company in New York City. I have what I call “the recipe,” which is something that I’ve built over a number of years of dancing. The first is a cross-training program…
Gerrymandering | US government and civics | US government and civics | Khan Academy
What we see here are two maps of congressional districts. On the left, we see some congressional districts in and around Austin, Texas. This black line shows us Travis County, where Austin, Texas, is. On this right map, we see the congressional districts …
Worked example: Calculating amounts of reactants and products | AP Chemistry | Khan Academy
We’re told that glucose (C6H12O6) reacts with oxygen to give carbon dioxide and water. What mass of oxygen in grams is required for complete reaction of 25.0 grams of glucose? What masses of carbon dioxide and water in grams are formed? So pause this vid…
Integral of product of cosines
We’ve been doing several videos now to establish a bunch of truths of definite integrals of various combinations of trigonometric functions so that we will have a really strong mathematical basis for actually finding the Fourier coefficients. I think we o…
How To Get Rich According To Warren Buffett
There are a million ways to make a million dollars. In this video, we’re looking at one of them, and the main character in this video is the legendary Warren Buffett, who made his fortune of over 104 billion dollars by investing in the stock market. After…