yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Less versus fewer | Frequently confused words | Usage | Grammar
Hello Garian, hello Rosie, hi David. Uh, so you’ve called me into the recording booth today? Yes, because uh, you have a bone to pick with me—just a little bit. Yeah, so I have always, in my usage, I always drawn a distinction between less and fewer. I w…
Can social media help GROW your business?
Remember, lots of businesses in America didn’t make it through the pandemic. This one did, and this is a giant location with all kinds of overhead. Look at how big it was! You’re kind of a story of survival, and I’m going across the country trying to find…
How Facial Expressions Help Robots Communicate with Us | Nat Geo Explores
[Narrator] There are a lot of us, all with different cultures, languages, beliefs. So, yeah. Communication. It’s not always easy. You’re crazy. You’re crazy. You’re crazy. (slapping) [Narrator] But no matter where we come from or the languages we spea…
Warren Buffett Just Made a NEW $10B Investment
This video is sponsored by Steak. Download the Steak app today and use the referral code AWC to receive a free stock when you fund your account. Details in the description. Hey guys, welcome back to the channel! In this video, we are going to be talking …
Amazing Honey Coiling High Speed Video! - Smarter Every Day 53
Hey, it’s me Destin. Welcome to Smarter Every Day, and today we’re going to show you some pretty cool high speed, and it has nothing to do with all those assault rifles. It’s actually much sweeter than that, literally. Check this out. It is a jar of honey…
Warren Buffett: 9 Mistakes Every Investor Makes
Warren Buffett is without a doubt the most well-known and highly respected investor on the planet. He bought his first stock at just 11 years old, and now at 91 years old, that means he has been investing for 80 years. During that time, Buffett has made h…