yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that's the graph right over there: Y is equal to G prime prime of X.

They ask us how many inflection points does the graph of G have? So let's just remind ourselves what an inflection point is. So that is when we go from being concave downwards to concave upwards, so something like this. Another way to think about it is a point where our slope goes from decreasing to increasing.

So here our slope is that, then it's a little lower, then it's a little lower, then it's a little lower, but then all of a sudden it starts increasing again. It starts increasing, getting higher, higher, and higher. So that would be an inflection point; whatever x value where that would actually happen, that would be an inflection point.

You could go the other way around; you could have a function that looks something like this, where we have a negative slope, but then our slope is increasing. Slope is increasing, slope is increasing, but then our slope begins decreasing again. This too would be an inflection point.

So in other videos, we go into more of the intuition of how do you think about the first and second derivatives of a function at an inflection point. But the big picture, at least for the purposes of this worked example, is to realize when you're looking at the second derivative, you have an inflection point where the second derivative crosses the x-axis.

It's not just, it's not enough to just touch the x-axis; you must cross the x-axis. And so right over here, we are crossing the x-axis, so that is an inflection point. Right over here, we are crossing the x-axis, so that is an inflection point here and here.

We touch the x-axis; our second derivative is equal to zero, but we don't cross. We don't cross the actual x-axis; we don't go from being positive to negative. We stay non-negative this entire time.

Similarly, right over here, maybe something interesting happens past this point, but they're telling us that the function is only defined over this interval. So actually nothing happens beyond getting that point, so we're not going to cross the x-axis.

To answer the question, how many inflection points does the graph G have? Well, it has two inflection points looking at the second derivative here. Now we know the answer.

Why does that make sense? Why do you have to cross the x-axis? Well, let's just imagine. Let's say that this is the graph of a second derivative, so this is f prime prime. So the first derivative, for example, could look like this.

Let me, the first derivative might look like this. We over here have a negative slope, negative slope, negative slope, negative slope, but it's getting closer and closer. Then right over here, all of a sudden, the slope becomes positive and increasing, so that would be F Prime of X.

Then you could think about, well, if this is describing the derivative of our function, then what's our function going to look like? Well, our function over here would have a very positive slope, but then the slope would keep decreasing all the way up until this point, and then it increases again. So we have positive slope right over here.

For example, our function might look like this: it might have a very positive slope, but then the slope keeps decreasing. Then, right over here, all of a sudden, the slope begins increasing again.

So here we were concave downward over this first part. Over this first part, we have a positive slope, but it's decreasing. Positive slope, but it's decreasing, and then we go to having a positive slope, but now we are increasing again.

And so this should give you a good sense for why you need to cross the x-axis in the second derivative.

More Articles

View All
Isolation - Mind Field (Ep 1)
[Music] Imagine being confined to a 10 by 10 foot room in complete isolation. No timekeeping devices, no phones, no books, nothing to write on, no windows. [Music] Psychologists say that fewer than three days in a room like this can lead to brain damage. …
Khan for Educators: Course Mastery
Hi, I’m Megan from Khan Academy, and in this video, we’re going to explore Khan Academy’s course mastery system. At Khan Academy, we’re devoted to mastery learning and build our content around our course mastery system. However, a question we hear freque…
Milk. White Poison or Healthy Drink?
Over the last decade, milk has become a bit controversial. Some people say it’s a necessary and nutritious food, vital for healthy bones, but others say it can cause cancer and lead to an early death. So, who’s right? And why are we drinking it anyway? […
I BOUGHT MY DREAM CAR!
Well guys, I finally did it! After years and years and years of literally, I’d, I’ve never owned my own car. After years of just riding a motorcycle and just bashing that around to get from A to B, and riding in the rain and all those horrible things, I …
2015 AP Biology free response 1 a c
Many species have circadian rhythms that exhibit an approximately 24-hour cycle. Circadian rhythms are controlled by both genetics and environmental conditions, including light. Researchers investigated the effect of light on mouse behavior by using a run…
Coral Bleaching in the Great Barrier Reef | Years of Living Dangerously
This year is the warmest on record, and with ocean temperatures reaching dangerously high levels, a major coral bleaching event is predicted to hit the Great Barrier Reef. It’s a race against time to document these reefs before climate change alters condi…