yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5c


2m read
·Nov 11, 2024

Find the value of K for which F has a critical point at X = -5.

All right, so let's just remind ourselves what F of X and F prime of X were. They gave it to us at the top. F of X is equal to ( \frac{1}{x^2 - Kx} ) and then F prime of X is equal to all of this business.

Let me rewrite it down here. So F of X is equal to ( \frac{1}{x^2 - Kx} ) and F prime of X is equal to ( \frac{K - 2x}{(x^2 - Kx)^2} ). We want to find the value of K for which F has a critical point at X = -5.

This means that X = -5 is in the domain. This means our function itself is defined at X = -5, and it means that F prime of -5 is equal to zero or undefined. A critical point is a member of the function's domain where the derivative is equal to zero or it's undefined.

So let's evaluate F prime of -5 in terms of K.

F prime of -5 in terms of K is going to be equal to ( \frac{K - 2 \cdot -5}{(-5)^2 - K \cdot -5} ), and then we want to square all of this.

So this is going to be equal to ( K + 10 ) over ( 25 + 5K ).

So what value of K makes F prime of -5 equal to zero? Well, F prime of -5 is equal to zero if K is equal to -10.

So that's the value of K for which F has a critical point at -5. Now you might be saying, "Well, what values of K?" That’s the value of K that makes the function equal zero; it makes the numerator equal zero and therefore makes the whole function equal to zero.

But why can't I pick a value of K that makes the derivative or it makes the numerator of the derivative zero and therefore makes the derivative equal to zero? I think I said function, not the derivative of the function.

But you might be saying, "Well, why can't I pick a value of K that makes the derivative undefined?” So you could think of what that is.

What would make this undefined? Well, if ( 25 + 5K = 0 ), then this is going to be undefined. You're going to have ( 0 ) squared divided by ( 0 ), it's going to be undefined.

So you could say F prime of 5 is undefined if K is equal to -5, right? ( 5*5 + 5 = 0 ).

But if K is equal to -5, then this can't be a critical point anymore at X = 5. It can't be a critical point because it won't be in its domain anymore.

If K is equal to -5, then F of X would be equal to ( \frac{1}{x^2 + 5x + 5} ), and then F will not be defined at 5.

So, neg5 couldn't be a critical point because it's not even in the domain.

The important thing is, in order to be a critical point, it has to be in the domain, and the derivative of that point has to be equal to zero or undefined. I can get the derivative to be undefined at 5 if we set K to -5, but if we set K to -5, then X = 5 will no longer be in the domain.

So we want to go with the K that just makes the numerator of our derivative equal to zero or sets our entire derivative equal to zero.

More Articles

View All
Tony Robbins Endorsing The Jet Business!
Because he’s so passionate, he gets in the head of whoever he’s dealing with, and he really fights for you. You know, it’s like, you know, there’s so many people in this industry, and they’re in a hangar someplace, they’re working on the phone. Steve know…
15 Reasons You’re Lost With NO Direction
So it’s 2024, 2025, 2044, and you’re lost. You’ve got no idea where to go, what you want to do, what you should be doing, and how to move forward. But why is that? What is stopping you? Realizing what is holding you back can help you finally move forward,…
Geometric distribution mean and standard deviation | AP Statistics | Khan Academy
So let’s say we’re going to play a game where on each person’s turn they’re going to keep rolling this fair six-sided die until we get a one, and we just want to see how many rolls does it take. So let’s say we define some random variable, let’s call it X…
"I Got Rich When I Understood This" | Jeff Bezos
I was working at a financial firm in New York City with a bunch of very smart people, and I had a brilliant boss I much admired. I went to my boss and told him I was going to start a company selling books on the internet. He took me on a long walk in Cent…
How UV Causes Cancer and Aging
Recently, I made a video about what the world looks like in the ultraviolet. Some things look the same, but generally, it’s hazier. Sometimes light and dark are flipped, skin looks blotchier, and fake teeth stand out. Whoa! Smile for me. Oh my goodness, …
Reid Hoffman at Startup School SV 2016
[Applause] So, uh, up next needs no introduction. I’ll give a very quick one. Reed Hoffman, uh, has been in—yeah, please do—round of applause! You know what it sounds like; you all know who he is. I’ll skip the introduction. All right, for the first que…