yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
What Does Colonizing Mars Look Like? | MARS
What will life be like in a early Mars colony? ROGER LAUNIUS: Let’s take some stages in terms of how we might do things on Mars. There is exploration, somebody going out and coming back. The next stage would be some sort of research station. We will most…
The scale of formality | Style | Grammar
Hello Grimarians! Hello Rosie! Hi David! So, we’re going to be talking about what we call the spectrum of formality today, in the context of language style. Balancing your style between formal and informal language when it’s appropriate is just a general…
Michael Burry Just Sold His ENTIRE Stock Portfolio...
Over the past few months, Michael Burry has been one of the most talked about investors, and it’s fair enough too. The guy is certainly not afraid to share his thoughts and opinions on the state of the economy on his Twitter page, interestingly titled “Ca…
The Monkeys of Sri Lanka | Born Wild: The Next Generation
The tropics of South Asia are teeming with wildlife of all kinds. National Geographic Explorer Sandesh Qader travels to a magical setting in Sri Lanka, where different species of baby monkeys learn to navigate life in a complex community. I’m an incredibl…
How secure is 256 bit security?
In the main video on cryptocurrencies, I made two references to situations where in order to break a given piece of security, you would have to guess a specific string of 256 bits. One of these was in the context of digital signatures, and the other in th…
Why Are We Morbidly Curious?
Hey Vsauce. Michael here. In 1924, psychologist Carney Landis drew lines on people’s faces and then photographed them in various scenarios to study facial expressions. But he didn’t use actors, and he didn’t tell the participants to pretend to feel emoti…