yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
Letting Go Of Resentment (Stoic & Buddhist perspectives)
There’s something special I would like to share with you today because very recently life taught me another lesson about resentment. Letting go of resentment is actually a lot easier than the mind makes us believe. I would like to share with you what I’ve…
The hidden beauty of the A* algorithm
Why are map applications so fast? If I want to find the shortest path from Prague to Rome, Google Maps tells me the answer extremely fast, in about a second or two. If this were your first course in programming, the answer would be that we can represent t…
Double Drug Bust | To Catch a Smuggler
♪ AGENT: It’s approaching target vehicle. DANIELLE: Copy. Thank you. We have a new vehicle. Unidentified at this time. DANIELLE: This is, is pretty typical. Either a driver swap or the addition of another, another person involved in, in the transportati…
Measuring area with partial unit squares | Math | 3rd grade | Khan Academy
Each square in the grid is a unit square with an area of 1 square cm. So, each of these squares is 1 square cm. This is 1 square cm, and this is 1 square cm, and so on. Now we’re asked, what is the area of the figure? By figure, I’m sure they mean this bl…
Marc Andreessen: Trump, Power, Tech, AI, Immigration & Future of America | Lex Fridman Podcast #458
I mean look we're adding a trillion dollars to the national debt every 100 days right now and it's now passing the size of the defense department budget and it's compounding and it's pretty soon it's going to be adding a trillion dolla…
Implicit differentiation, product and chain rules at once
Let’s say Y is equal to the natural log of x to the X power. What we want to do is we want to find the derivative of Y with respect to X. So I encourage you to pause this video and see if you could do it. So when you first try to tackle this, this is a l…