yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
Paralysed Rats Made To Walk Again
We have all heard of mind over matter, but is it possible that the right motivation can actually help repair spinal damage? I have come to Lausanne, Switzerland, to find out about some innovative research being done to repair the spinal cords of rats usin…
Khan Academy Ed Talks featuring Ben Gomes - Thursday, April 22
Hello and welcome to Ed Talks with Khan Academy, where we talk to influential people in the education space. Today, we are happy to welcome Ben Gomes, who’s the Senior Vice President of the Learning and Education organization at Google. Before we get int…
Can Our Universe Destroy Itself? #shorts
Can our universe destroy itself? Everything in the universe strives to be in the most stable state possible. For example, a ball on top of a hill is in an unstable state. When pushed, it will roll downhill, lose its potential energy, and end up in a stabl…
Why You Should Leave Your FAANG Job
We all know these people that want to just, like, tell you their darkest secret, which is they wake up every day and they, like, dream of quitting. Like, they have fantasies of quitting every day. Those are people that probably should quit. This is Micha…
Crayfish Hunting in Tasmania | Gordon Ramsay: Uncharted
I’m 30 feet down using a dining system I’d never tried before called snuba. I’m trying to keep my air hose from strangling me, praying I don’t run into a great white below the surface. I try to focus on finding a crayfish. I fight through the thick kelp u…
2015 AP Calculus AB/BC 3a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Johanna jogs along a straight path for (0 \leq t \leq 40). Johanna’s velocity is given by a differentiable function (v). Selected values of (v(t)), where (t) is measured in minutes and (v(t)) is measured in meters per minute, are given in the table above …