yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
Misconceptions About Falling Objects
Let’s say Jack holds both balls above his head and then he drops them at exactly the same time. What do you expect to see? Well, they’re going to hit the ground at the same time. I expect them to both land at the same time. The same time, same time! This…
Safari Live - Day 118 | National Geographic
Good afternoon and welcome to the sunset safari! Off to a great start already! We did in fact have a butterfly sitting on a piece of grass. It was a cabbage white, but of course it flew away just before we went live. Naturally, my name is Taylor McCurdy a…
Jamie Dimon’s Warning of an Economic Hurricane
This video is sponsored by Seeking Alpha. You can get 12 months of Seeking Alpha premium for just $99 via the link in the description. Is the American banking system truly safe and secure? Yes! I mean, the banks have extraordinary liquidity and extraordi…
Revolutions 101 | National Geographic
[Narrator] Politics are a powerful and dynamic human creation, a truth most evident in revolutions around the world. A revolution, in a political sense, is a sudden and seismic shift from one form of government to another. While revolutions come in many…
What's in Bill Gates' $47 Billion Stock Portfolio?
Bill Gates, the internet sensation. You might know him as the guy that jumped over a chair or the guy that has no idea what the price of groceries are. Or you might know him as the genius co-founder of Microsoft and the world’s seventh richest man, just b…
Multiplying and dividing decimals by 10
We’ve already learned that when we multiply by ten, let’s say we took the number 53 and we were to multiply it by ten, it has the effect of shifting all the digits one place to the left. So this should be a review for you, but this was going to be 530. We…