yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
The Sea Otter's Enchanted Forest | America's National Parks
Just offshore, the shallow coastal waters are also a refuge for marine mammals, such as the sea lions that hang out on the rocks or hunt beneath the sea. Here, in their own enchanted forest, the kelp beds are several stories deep. [Music] There are seals…
How McDonalds Is Taking Over The World
Every 5 hours, somewhere in the world, a new McDonald’s pops up. It’s been said that McDonald’s is one of the very few businesses that will always be profitable and recession-proof. And once you look at the stock, it seems to be true. So how did McDonald’…
The CEO Who Pays Employees to De-Locate From the Bay
I haven’t started with questions from Twitter before, but I feel like they kind of covered some of the initial ones I wanted to go off with, uh-huh. So maybe we should just go with those. All right, so the first one was from Ben Thompson, and he asked fo…
Moon 101 | National Geographic
[Narrator] Over 150 moons orbit the solar system’s planets. And one of those moons calls Earth home. The moon was formed about 4.5 billion years ago when, according to one theory, the Earth slammed into another early planet. Debris from this collision beg…
Rational equations intro | Algebra 2 | Khan Academy
[Instructor] Let’s say we wanna solve the following equation for x. We have x plus one over nine minus x is equal to 2⁄3. Pause this video and see if you can try this before we work through it together. All right, now let’s work through this together. N…
Salmon Snag | Life Below Zero
So we’re gonna set this net. We’re gonna catch ourselves a bunch of salmon. If we have different kinds of salmon that come here, we’re gonna make dog food, people food, and food for gifts and giving, and trading, and whatever else we feel like doing for t…