yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
Homeroom with Sal & Dan Roth - Wednesday, November 11
Hi everyone! Welcome to the homeroom live stream. Sal here from Khan Academy. I’m excited about our conversation today with Dan Roth, editor-in-chief of LinkedIn. A lot to talk about on both the future of work and a lot on just the future of media too. I …
Why Society Peaked in 2016
In many ways, the world sucks right now. We’re more divided than we’ve ever been. There’s more chaos, war, and unrest all around the globe. Smartphones and social media that used to act as an escape have turned into digital prisons, trapping us into an en…
We lost $1,000,000+ (Here’s What We Learned)
This has been a horrible year for investors across our stocks, crypto, and venture investments. Our portfolio dipped by over one million dollars. Now, given the situation, we can offer a unique hands-on perspective on what it’s like to lose more money tha…
NEW Tudor Watches 2024
Something happens. I don’t, I don’t know what to tell you. It just, in the watch world, when something gets hot, it gets hot, and nobody can really put the finger on why. What’s hotter than Tudor? Nothing! [Music] [Music] [Applause] Okay! Mr. Wonderfu…
How To Sell a $25,000,000 Private Jet
Okay, uh, which 550 are you calling about? What would you like to know about it? The asking price is right on this one: 27.5 on that airplane. 27.5, negotiable, right? What isn’t right? [Laughter] What’s the status on the, your client? What is your clien…
Aggregate production function and economic growth | APⓇ Macroeconomics | Khan Academy
So we are posed with the question: all else equal, which of the following would likely cause aggregate production to go up? Pause this video and see which of these you think would do that. All right, now let’s work through this together. This first one s…