yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding a Cancer Killer | Breakthrough


2m read
·Nov 11, 2024

NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system's T-cells to fight and kill leukemia in mice. [squeaking]

CARL JUNE: Yeah. I have been through a long journey. So I was a physician. And then gradually, I came to the conclusion that I could probably help more people through my scientific laboratory efforts than actually seeing people one at a time in a clinic. And I tell my family now that my MD stands for mouse doctor.

NARRATOR: The immune system protects you from outside invasion. If a virus, bacteria, or fungus slips into your body, the immune system responds with a coordinated attack that kills the invader, and only the invader, leaving your body intact. [chittering] This is a T-cell. This immune cell's job is to kill infected cells before they cause more damage. In theory, T-cells can be extraordinarily potent against leukemia. But there's one problem. Since cancer is effectively part of your own body, the immune system sometimes ignores these rogue cells, allowing the cancer to spread unchecked. June and his team have worked tirelessly to find a way to get the immune system to recognize and destroy all of the cancer cells in the body.

CARL JUNE: The therapy we're developing is multidisciplinary. It involves leukemia specialists. David Porter is known around the world for his treating various kinds of leukemia. It involves immunology expertise, viral vector design expertise, and then the cell culture expertise that Bruce Levine knows more about than anyone in the world, I'm quite sure. OK. I'm a professor in cancer gene therapy. And I direct the Clinical Cell and Vaccine Production Facility. And what we do is to develop, manufacture, and test cell and gene therapies to fight cancer using the patient's own immune cells that have been genetically targeted to cancer. [humming]

A CAR T-cell is a T-cell that is genetically modified in a way that allows it to see and recognize a cancer cell. A "CAR" stands for chimeric antigen receptor. It's a molecule that is synthetic. We can put it into an immune cell and genetically change the immune cell to express the CAR molecule. That function of binding activates the T-cell. And it allows it to become active, to become a killer cell, and to kill the leukemia. [explosions] [yelp] [belch] [explosion]

More Articles

View All
Adam Brown on how to be resilient during a time of high stress and anxiety | Homeroom with Sal
Hi everyone, welcome to the daily homeroom live stream. Sal here from Khan Academy. For those of you who are wondering what this is, this live stream is something we started as soon as we saw schools starting to get closed around the world. Because we saw…
Exploring a Seedy Reefer | Lawless Oceans
When I look at this ship, it just speaks seedy to me. There’s something suspicious about it. Not only is it a reefer with a Chinese name, indicating that it could be Chinese or Taiwanese, but now all of a sudden it’s got a Bolivian flag, and that’s a flag…
EVERYTHING You've Been Told About Making Money Is WRONG! | Kevin O'Leary
[Music] Hey, Mr. Wonderful here! You know, one of the things about doing television, live television, particularly earning more early morning television—you got to get up early. I mean, this is live TV; very often the show starts at 6:00 in the morning. S…
Biased and unbiased estimators from sampling distributions examples
Alejandro was curious if sample median was an unbiased estimator of population median. He placed ping-pong balls numbered from zero to 32 in a drum and mixed them well. Note that the median of the population is 16. He then took a random sample of five bal…
Kirchhoff's current law | Circuit analysis | Electrical engineering | Khan Academy
Up to now, we’ve talked about, uh, resistors, capacitors, and other components, and we’ve connected them up and learned about OHS law for resistors. We also learned some things about series resistors, like we show here the idea of Kirchhoff’s laws. These …
Second derivative test | Using derivatives to analyze functions | AP Calculus AB | Khan Academy
So what I want to do in this video is familiarize ourselves with the second derivative test. Before I even get into the nitty-gritty of it, I really just want to get an intuitive feel for what the second derivative test is telling us. So let me just draw…