yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding multi digit numbers with place value


4m read
·Nov 11, 2024

What we're going to do in this video is get some practice adding multiple digit numbers. But the point of it isn't just to get the answer, but to understand why the method we use actually works.

So we're going to add 40,762 to 30,473, and you can pause the video and try to solve it on your own. But I encourage you to watch this one because it's really about understanding how things happen.

So what I'm going to do is first think about this in terms of place value. Let me write out my place values. Let's see, this goes all the way up to the ten-thousands place. So let's see, ten-thousands, and then we have thousands, thousands, then we have hundreds. I could write these words out, but it's a little bit faster to write it this way. And then we could have a tens place, and then we could have a ones place. I want to do that in a different color.

So then we have a ones place. Let me make a table here. I'm going to express both of these numbers in terms of ten thousands, thousands, hundreds, tens, and ones, and then I'm gonna at the same time use what's sometimes known as the standard method or the standard algorithm. Algorithm's a fancy word for a system, a way of doing something.

But let's first represent these numbers. So here I have four ten thousands—one, two, three, four. Here I have three ten thousands—one, two, three. I'm gonna add these two together eventually. In both of these numbers, I have zero thousands, so I have nothing in this column right now. Here I have seven hundreds—one, two, three, four, five, six, seven. Here I have four hundreds—one, two, three, four.

Then I go to the tens place. Here I have six tens—one, two, three, four, five, six. Here I have seven tens—one, two, three, four, five, six, seven. And then last but not least, here I have two ones—one, two. And here I have three ones—one, two, three.

Now let's just rewrite this number up here. This is just—this is four ten thousands, so this is forty thousand. I have zero thousands right over there, and then I have seven hundreds, seven hundreds. I have six tens, six tens, and I have two ones. I'm just rewriting the number I want. Let me write the tens in that blue color—so, six tens, and then two ones. Having trouble switching colors—two ones.

So there you have it. This and this are just different ways of representing the same number. And then this down here, I have three ten thousands, and then I have zero thousands. I have four hundreds here, and then I have—was this seven tens? Seven tens, and then I have three ones.

And so now let's add up everything. So I can add it here, and then I can also add up things right over here. So in the standard method, we would start at the lowest place, and we'd say, "Okay, two ones plus three ones is equal to five ones." And similarly, two ones plus three ones would be one, two, three, four, five ones—fair enough, nothing fancy there.

Now let's go to the tens place. Well, in the tens place, we have six tens plus seven tens, and in the standard method, what you say is that's thirteen tens. But thirteen tens is the same thing as three tens and one hundred.

So what you do is you would regroup. You would say, "Hey, look, this is three tens and one hundred." Sometimes people say, "Oh, you're carrying the 1. 6 plus 7 is 13, carry the 1," and it seems somewhat magical. But all you're doing is you're taking 10 of the tens and you're regrouping it as a hundred.

It'll be a little bit clearer here. So we have six tens, and then we have seven tens. You add them all together: you get one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen tens. And all we're doing right over here is we're saying, "Look, this is equal to a hundred."

So let's just convert that into a hundred right over here—let's just convert that. And so what we do is we just write the 3 in the tens place and then we add an extra 1 in the hundreds place.

And so what are we going to have in the hundreds place now? And actually, let me do it here because it's a little bit more interesting. So I have one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve hundreds, so I could write them down here. One, two, three, four, five, six, seven, eight, nine, ten, eleven, and twelve.

But with the same thing, we don't have a digit for the number 12 in our traditional number system. And so what I could do is I could take 10 of these and I can convert it to a thousand. So I'm going to take 10 of those and give myself a thousand. And we're going to do the exact same thing over here. One plus seven plus four is 12.

So you'd write that's 2 hundreds because this is 12 hundreds—that's two hundreds plus a thousand. So we just regrouped again. Now in the thousands place, one plus zero plus zero is one thousand, and you see that right over here—you have one thousand.

And then finally, in the ten thousands place, four ten thousands plus three ten thousands is seven ten thousands. Four ten thousands plus three ten thousands is one, two, three, four, five, six, seven ten thousands.

And so this number is seventy-one thousand two hundred and thirty-five—71,235. So hopefully, it all makes sense how these two things will fit together; that what's going on over here—you're not just magically carrying numbers or magically regrouping, you're just representing the same number in different ways.

More Articles

View All
Saving Lions: How I’m Protecting Wildlife in My Homeland | Nat Geo Live
THANDIWE MWEETWA: Our beautiful wilderness is in trouble. It’s being hammered on all sides by human encroachment, poaching, and habitat degradation. And our mission is to save these large cats, wild dogs, and all these other species in our beautiful ecosy…
Visualizing division with arrays
[Instructor] We have three different pictures here, and my question to get us warmed up is which of these could represent 20 divided by four? Pause this video and see if you can figure that out. All right, so let’s go through each of these. And, actuall…
I Spoke to the REAL Inventor of Facebook. (The Social Network Explained)
Okay, we are now focusing on one of the newest members of Harvard’s class of 2006. Mark Zuckerberg originally launched the Facebook.com from his dorm at Harvard College on the 4th of February 2004. He and his friend Eduardo Saverin had invested a thousand…
Safari Live - Day 214 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello, and welcome to your live Safari experience that happens every day, twice a day, except for this morning, wher…
The 150 hour rule to buy an airplane.
Some people say, “Well, I want to buy an airplane. I’m going to fly 50 hours a year. I could rent it out the rest.” Your business is not to rent airplanes. You’re going to get a headache from all the costs and all the different things that are going to co…
Evaluating exponent expressions with variables
We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2). All right, now let’s work through …