yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding rational expression: unlike denominators | High School Math | Khan Academy


3m read
·Nov 11, 2024

Pause the video and try to add these two rational expressions. Okay, I'm assuming you've had a go at it. Now we can work through this together.

So, the first thing that you might have hit when you tried to do it is you realize that they have different denominators. It's hard to add fractions when they have different denominators. You need to rewrite them so that you have a common denominator.

The easiest way to get a common denominator is you can just multiply the two denominators, especially in a case like this where they don't seem to share any factors. Both of these have factors you can get, and they don't share anything in common.

So, let's set up a common denominator. This is going to be equal to something. Let's see, it's going to be equal to something over our common denominator. Let's make it 2x. Let me do this in another color. So, we're going to make it ( 2x - 3 ) times ( 3x + 1 ), and then plus something else over ( 2x - 3 ) times ( 3x + 1 ).

To go from just ( 2x - 3 ) here in the denominator to ( 2x \times (3x + 1) ), we multiply the denominator by ( 3x + 1 ). So, if we do that to the denominator, we don't want to change the value of the rational expression we have; we'd also have to do that to the numerator.

So, the original numerator was ( 5x ) (doing that in blue color), and now we're going to multiply it by the ( 3x + 1 ). So, times ( 3x + 1 ). Notice I didn't change the value of this expression; I multiplied by ( \frac{3x + 1}{3x + 1} ), which is 1 as long as ( 3x + 1 ) does not equal zero.

So, let's do the same thing over here. Over here, I have a denominator of ( 3x + 1 ). I multiply it by ( 2x - 3 ). So, I would take my numerator, which is ( -4x^2 ), and I would also multiply it by ( 2x - 3 ). Let me put parentheses around this so it doesn't look like I'm subtracting ( 4x^2 ).

So, then I can rewrite all of this as being equal to... Well, in the numerator, I’m going to have ( 5x \times 3x ), which is ( 15x^2 ) and ( 5x \times 1 ), which is ( + 5x ).

And then, over here (let me do this in green), let's see... I could do ( -4x^2 \times 2 ) which would be ( -8x^2 ), and then ( -4x^2 \times -3 ) which is ( +12x^2 ).

Did I do that right? Oh, let me be very careful. My spider sense could tell that I did something shady. In fact, if you want to pause the video, you could see and try to figure out what I just did that's wrong.

So, ( -4x^2 \times 2x ) is ( -8x^3 ), and then ( -4x^2 \times -3 ) is ( +12x^2 ). Now, our entire denominator, our entire denominator, we have a common denominator now, so we were able to just add everything.

It's ( (2x - 3)(3x + 1) ), and let's see how we can simplify this. So, this is all going to be equal to... Let me draw and make sure we recognize it's a rational expression.

And so let's see, we can look at, our highest degree term here is the ( -8x^3 ). So, it's ( -8x^3 ), and then we have ( 15x^2 ) and we also have ( +12x^2 ). We could add those two together to get ( 27x^2 ).

So, we've already taken care of this. We've taken care of those two, and we're just left with ( +5x ). So, all of that is over ( (2x - 3)(3x + 1) ), and we are all done.

It doesn't seem like there's any easy way to simplify this further. You could factor out an ( x ) out of the numerator, but that's not going to cancel out with anything in the denominator. And it looks like we are all done.

More Articles

View All
Firefighters Reflect on 9/11 | 9/11: One Day in America
[Music] Thanks. [Applause] Stay together, stay together. Let me know what’s going on. Um, we knew at that moment that our problem just doubled in size. [Music] So at that point, we met in the football huddle. I’m going to send him out. Deputy Chief, the D…
Differentiating polynomials example | Derivative rules | AP Calculus AB | Khan Academy
So I have the function f of X here, and we’re defining it using a polynomial expression. What I would like to do here is take the derivative of our function, which is essentially going to make us take a derivative of this polynomial expression, and we’re …
Festival Flip! | Epcot Becoming Episode 5 | National Geographic
Festivals at EPCOT are in the DNA of the park. It’s truly the transformation of the park through those festival seasons that keep guests coming back. EPCOT festivals have continued to evolve since starting back in 1994 with the EPCOT International Flower …
TIL: Dinosaurs May Have Danced Like Birds | Today I Learned
[Music] I think one of the most exciting things that people don’t really realize is that birds are living dinosaurs. And dinosaurs giving rise to birds probably did the same thing that birds [Music] do. Virtually all birds use their feathers for display.…
How To GET SMARTER In 2023
How to get smarter in 2023 the Alux way. Hello, Alexers! We hope you had a wonderful time during the holidays and don’t worry, the Alex lady will be back this week. But some of you might be already familiar with my voice from the Alux app. Now, back to t…
Homeroom with Sal & Margaret Spellings - Wednesday, November 3
Hi everyone, welcome to the homeroom live stream. Sal here from Khan Academy. Uh, we have a very exciting guest today, Margaret Spellings, former Secretary of Education of the United States and CEO of Texas 2036. But before we get to that, I will give my…