yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding rational expression: unlike denominators | High School Math | Khan Academy


3m read
·Nov 11, 2024

Pause the video and try to add these two rational expressions. Okay, I'm assuming you've had a go at it. Now we can work through this together.

So, the first thing that you might have hit when you tried to do it is you realize that they have different denominators. It's hard to add fractions when they have different denominators. You need to rewrite them so that you have a common denominator.

The easiest way to get a common denominator is you can just multiply the two denominators, especially in a case like this where they don't seem to share any factors. Both of these have factors you can get, and they don't share anything in common.

So, let's set up a common denominator. This is going to be equal to something. Let's see, it's going to be equal to something over our common denominator. Let's make it 2x. Let me do this in another color. So, we're going to make it ( 2x - 3 ) times ( 3x + 1 ), and then plus something else over ( 2x - 3 ) times ( 3x + 1 ).

To go from just ( 2x - 3 ) here in the denominator to ( 2x \times (3x + 1) ), we multiply the denominator by ( 3x + 1 ). So, if we do that to the denominator, we don't want to change the value of the rational expression we have; we'd also have to do that to the numerator.

So, the original numerator was ( 5x ) (doing that in blue color), and now we're going to multiply it by the ( 3x + 1 ). So, times ( 3x + 1 ). Notice I didn't change the value of this expression; I multiplied by ( \frac{3x + 1}{3x + 1} ), which is 1 as long as ( 3x + 1 ) does not equal zero.

So, let's do the same thing over here. Over here, I have a denominator of ( 3x + 1 ). I multiply it by ( 2x - 3 ). So, I would take my numerator, which is ( -4x^2 ), and I would also multiply it by ( 2x - 3 ). Let me put parentheses around this so it doesn't look like I'm subtracting ( 4x^2 ).

So, then I can rewrite all of this as being equal to... Well, in the numerator, I’m going to have ( 5x \times 3x ), which is ( 15x^2 ) and ( 5x \times 1 ), which is ( + 5x ).

And then, over here (let me do this in green), let's see... I could do ( -4x^2 \times 2 ) which would be ( -8x^2 ), and then ( -4x^2 \times -3 ) which is ( +12x^2 ).

Did I do that right? Oh, let me be very careful. My spider sense could tell that I did something shady. In fact, if you want to pause the video, you could see and try to figure out what I just did that's wrong.

So, ( -4x^2 \times 2x ) is ( -8x^3 ), and then ( -4x^2 \times -3 ) is ( +12x^2 ). Now, our entire denominator, our entire denominator, we have a common denominator now, so we were able to just add everything.

It's ( (2x - 3)(3x + 1) ), and let's see how we can simplify this. So, this is all going to be equal to... Let me draw and make sure we recognize it's a rational expression.

And so let's see, we can look at, our highest degree term here is the ( -8x^3 ). So, it's ( -8x^3 ), and then we have ( 15x^2 ) and we also have ( +12x^2 ). We could add those two together to get ( 27x^2 ).

So, we've already taken care of this. We've taken care of those two, and we're just left with ( +5x ). So, all of that is over ( (2x - 3)(3x + 1) ), and we are all done.

It doesn't seem like there's any easy way to simplify this further. You could factor out an ( x ) out of the numerator, but that's not going to cancel out with anything in the denominator. And it looks like we are all done.

More Articles

View All
5 Stocks the Smart Money is Buying for 2024.
So, as you guys know, I love tracking the 13F filings of the world’s super investors to see what they’re buying and selling from quarter to quarter. But I follow this website called Data Roma, which actually compiles a list of 80 famous investors. Each qu…
Philosophy For Breakups | STOICISM
A breakup can be excruciatingly painful. No doubt about it. Last months I’ve had several requests for a video about breakups. I think we can get a lot of information from philosophy to make a breakup a bit more bearable. So, I’ve decided to make a series …
Office Hours with Kevin Hale and Qasar Younis at Startup School SV 2016
Dramatic entrance that was easy, easily pleased crowd. Uh, H we have a favor to ask of all of you guys out there. Um, how many people follow Justin on Snapchat? All right, great. So Justin’s not here. Oh, but there should be punishment for that. But there…
The Changing World Order Has Just Begun | How To Prepare
What’s up, guys? It’s Graham here. So throughout the last week, there’s been a new topic gaining a lot of attention with over two and a half million views over these last few days. It has to do with the video posted by Ray Dalio titled Principles for Dea…
Moral realism doesn't help you (much)
Moral nihilism, uh, the belief that moral facts don’t exist, or at least that’s how I’m going to define it here. Lord Hawkeye gives the impression that he does believe the moral facts exist. I’m not certain that he really does. A couple of his remarks abo…
Gordon Goes Spearfishing for Snapper | Gordon Ramsay: Uncharted
Beautiful. Yeah. While it will be easy to spend the rest of the day relaxing on this beautiful beach, there’s work to be done underwater. That snapper I just tasted is exactly what I need for my big cook, and legendary local spear fisherman Tony is the ma…