yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding rational expression: unlike denominators | High School Math | Khan Academy


3m read
·Nov 11, 2024

Pause the video and try to add these two rational expressions. Okay, I'm assuming you've had a go at it. Now we can work through this together.

So, the first thing that you might have hit when you tried to do it is you realize that they have different denominators. It's hard to add fractions when they have different denominators. You need to rewrite them so that you have a common denominator.

The easiest way to get a common denominator is you can just multiply the two denominators, especially in a case like this where they don't seem to share any factors. Both of these have factors you can get, and they don't share anything in common.

So, let's set up a common denominator. This is going to be equal to something. Let's see, it's going to be equal to something over our common denominator. Let's make it 2x. Let me do this in another color. So, we're going to make it ( 2x - 3 ) times ( 3x + 1 ), and then plus something else over ( 2x - 3 ) times ( 3x + 1 ).

To go from just ( 2x - 3 ) here in the denominator to ( 2x \times (3x + 1) ), we multiply the denominator by ( 3x + 1 ). So, if we do that to the denominator, we don't want to change the value of the rational expression we have; we'd also have to do that to the numerator.

So, the original numerator was ( 5x ) (doing that in blue color), and now we're going to multiply it by the ( 3x + 1 ). So, times ( 3x + 1 ). Notice I didn't change the value of this expression; I multiplied by ( \frac{3x + 1}{3x + 1} ), which is 1 as long as ( 3x + 1 ) does not equal zero.

So, let's do the same thing over here. Over here, I have a denominator of ( 3x + 1 ). I multiply it by ( 2x - 3 ). So, I would take my numerator, which is ( -4x^2 ), and I would also multiply it by ( 2x - 3 ). Let me put parentheses around this so it doesn't look like I'm subtracting ( 4x^2 ).

So, then I can rewrite all of this as being equal to... Well, in the numerator, I’m going to have ( 5x \times 3x ), which is ( 15x^2 ) and ( 5x \times 1 ), which is ( + 5x ).

And then, over here (let me do this in green), let's see... I could do ( -4x^2 \times 2 ) which would be ( -8x^2 ), and then ( -4x^2 \times -3 ) which is ( +12x^2 ).

Did I do that right? Oh, let me be very careful. My spider sense could tell that I did something shady. In fact, if you want to pause the video, you could see and try to figure out what I just did that's wrong.

So, ( -4x^2 \times 2x ) is ( -8x^3 ), and then ( -4x^2 \times -3 ) is ( +12x^2 ). Now, our entire denominator, our entire denominator, we have a common denominator now, so we were able to just add everything.

It's ( (2x - 3)(3x + 1) ), and let's see how we can simplify this. So, this is all going to be equal to... Let me draw and make sure we recognize it's a rational expression.

And so let's see, we can look at, our highest degree term here is the ( -8x^3 ). So, it's ( -8x^3 ), and then we have ( 15x^2 ) and we also have ( +12x^2 ). We could add those two together to get ( 27x^2 ).

So, we've already taken care of this. We've taken care of those two, and we're just left with ( +5x ). So, all of that is over ( (2x - 3)(3x + 1) ), and we are all done.

It doesn't seem like there's any easy way to simplify this further. You could factor out an ( x ) out of the numerator, but that's not going to cancel out with anything in the denominator. And it looks like we are all done.

More Articles

View All
Interpreting equations graphically | Mathematics III | High School Math | Khan Academy
Let F of x = 3x - 5 and g of x = x^3 - 4x^2 + x + 6. The graphs of y = F of x and y = G of x are shown below, and we see them right over here. This y = F of x is in, that is, in that purplish color. Let me see if I can get that same purplish color so tha…
Albert Lin climbs up a treacherous waterfall in search of ancient tombs
As we follow the river deeper, the environment becomes more challenging. This terrain gave the Cho natural protection from their enemies. Okay. [Music] Right, can we go around? Let’s see. I have a rope. I have a rope. I’ll go up first, and I’ll tie off …
Photoperiodism | Plant Biology | Khan Academy
So one question that biologists have long asked is: how do plants know what to do at different times of the year? One mechanism by which they know, kind of, you could say what time of year it is, is through photoperiodism. “Photo” for light and then “peri…
Exponents of decimals
What we’re going to do in this video is get some practice evaluating exponents of decimals. So let’s say that I have 0.2 to the third power. Pause this video, see if you can figure out what that is going to be. Well, this would just mean if I take somet…
Tracing loop execution | Intro to CS - Python | Khan Academy
What exactly is happening behind the scenes when the computer executes a while loop? Let’s trace a while loop step by step to find out. Before we start, let’s see if we can get some intuition for how many times this loop repeats. To count repetitions, we…
Warren Buffett: How to Make Your First $1 Million
Warren Buffett is universally regarded as the greatest investor ever and has a net worth of over 100 billion dollars. However, this wasn’t always the case. Buffett got his start at just 11 years old when he made his first investment, buying three shares o…