yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Consider the left and right Riemann sums that would approximate the area under y is equal to g of x between x equals 2 and x equals 8. So we want to approximate this light blue area right over here. Are the approximations overestimations or underestimations? So let's just think about each of them.

Let's consider the left and the right Riemann sums. First, the left, and I'm just going to write left for short, but I'm talking about the left Riemann sum. They don't tell us how many subdivisions to make for our approximation, so that's up to us to decide. Let's say we went with three subdivisions. Let's say we wanted to make them equal; they don't have to be, but let's say we do.

So the first one would go from two to four. The next one would go from four to six, and the next one from six to eight. If we do a left Riemann sum, you use the left side of each of these subdivisions in order to find the height. You evaluate the function at the left end of each of those subdivisions for the height of our approximating rectangles.

So we would use g of 2 to approximate for or to set the height of our first approximating rectangle, just like that. And then we would use g of 4 for the next rectangle, so we would be right over there. And then you'd use g of 6 to represent the height of our third and our final rectangle right over there.

Now when it's drawn out like this, it's pretty clear that our left Riemann sum is going to be an overestimation. How do we know that? Because these rectangles, the area that they're trying to approximate, are always contained in the rectangles, and these rectangles have this surplus area. So they're always going to be larger than the areas that they're trying to approximate.

In general, if you have a function that's decreasing over the interval that we care about right over here and strictly decreasing the entire time, if you use the left edge of each subdivision to approximate, you're going to have an overestimate. Because the left edge, the value of the function there, is going to be higher than the value of the function at any other point in the subdivision.

And so that's why for decreasing functions, the left Riemann sum is going to be an overestimation. Now let's think about the right Riemann sum, and you might already guess that's going to be the opposite, but let's visualize that. So let's just go with the same three subdivisions, but now let's use the right side of each of these subdivisions to define the height.

So for this first rectangle, the height is going to be defined by g of 4, so that's right over there. And then for the second one, it's going to be g of 6, so that is right over there. And for the third one, it's going to be g of 8. And so let me shade these in to make it clear which rectangles we're talking about. This would be the right Riemann sum to approximate the area.

It's very clear here that this is going to be an underestimate. We see in each of these intervals that the Riemann, the right Riemann sum, or the rectangle that we're using for the right Riemann sum, is a subset of the area that is trying to estimate. We're not able to; it doesn't capture this extra area right over here.

And once again, that is because this is a strictly decreasing function. So if you use the right endpoint of any one of these or the right side of any of these subdivisions in order to define the height, that right value of g is going to be the lowest value of g in that subdivision.

And so it's going to be a lower height than what you could even say is the average height of the value of the function over that interval. So you're going to have an underestimate in this situation. Now, if your function was strictly increasing, then these two things would be swapped around.

And of course, there are many functions that are neither strictly increasing nor decreasing, and then it would depend on the function and real, and sometimes even it would depend on the type of subdivisions you choose to decide whether you have an overestimate or an underestimate.

More Articles

View All
The Most Advanced Civilization In The Universe
[Music] Earth and civilization, as we know it, has come a long way in the past 200,000 years and has experienced a multitude of changes. In that time, the human species has only existed for a mere 0.0015 percent of the immense 13.7 billion-year age of the…
Ray Dalio: The Investing Opportunity of a Generation
Yes, crash was negative, right? One and a half, two percent real rates—terrible! Now cash is relatively attractive. Ray Dalio is a billionaire and one of the most highly respected investors in the world. He has been investing for 50 years, meaning he kno…
Public education helps the poor?
A user whose name I’ve forgotten, unfortunately, was a supporter of public schooling. He claimed that even in the most favorable of circumstances, a large minority would be unable to afford schooling if a public option wasn’t available. This is an unjusti…
The Solar System -- our home in space
The solar system, our home in space. We live in a peaceful part of the Milky Way. Our home is the solar system, a four and a half billion year old formation that races around the galactic center at 200,000 kilometers per hour and circles it once every 250…
The pre-equilibrium approximation | Kinetics | AP Chemistry | Khan Academy
The pre-equilibrium approximation is used to find the rate law for a mechanism with a fast initial step. As an example, let’s look at the reaction between nitric oxide and bromine. In the first step of the mechanism, nitric oxide combines with bromine to…
Playing Sci-Fact or Sci-Fiction | StarTalk
Now we’re going to play a game called SFA or SCI fiction, and you’re going to identify whether you think it is SFA or a sci fiction or maybe you don’t know if I don’t know either. I won’t claim to know. That sounds good. The days were shorter millions of…