yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Function as a geometric series | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're asked to find a power series for f, and they've given us f of x is equal to 6 over 1 + x to the 3 power. Now, since they're letting us pick which power series, you might say, "Well, let me just find the McLaurin series," because the McLaurin series tends to be the simplest to find, centered at zero.

You might immediately go out and say, "All right, well, let me evaluate this function at 0." Evaluating the first derivative at zero is pretty straightforward, but then once you start taking the second and third derivatives, it gets very hard very fast. You could do a simplification where you could say, "Well, let me find the McLaurin series for f of u is equal to 6 over 1 + u," where u is equal to x cubed.

So you find this McLaurin expansion in terms of u and then substitute for x cubed. Actually, that makes it a good bit simpler. So, that is another way to approach it, but the simplest way to approach it is to say, "Hey, you know what? This form right over here, this rational expression, looks similar; it looks like the sum of a geometric series."

Let's just remind ourselves what the sum of a geometric series looks like. If I have a plus a * r, so a is my first term, r is my common ratio, plus I'm going to multiply times r again, plus a * r squared, plus a * r cubed, and I keep going on and on and on forever. We know that this is going to be equal to a over 1 minus r, where a is the first term and r is the common ratio. This comes from the sum of a geometric series.

Notice that what we have here, our f of x, our definition of f of x, and the sum of a geometric series look very, very similar. If we say that this right over here is a, so a is equal to 6, and if negative r is equal to x cubed, or we could say, "Let me rewrite this," I could write this denominator as 1 minus x cubed.

Now, you can say, "Okay, well, r could be equal to x cubed," and just like that, we can expand it out! Well, if a is equal to 6 and r is equal to x cubed, then we can just write this out as a geometric series, which is very straightforward.

So, let's do that, and I will do this in this nice pink color. The first term would be 6, plus 6 times our common ratio, which is -6x cubed. Actually, let me just write that as -6x cubed.

Then we're going to multiply by x cubed again, so that's going to be... If I multiply this by - x cubed, that's going to be positive 6 * x to the 6th power. Then, I'm going to multiply by x cubed again, so it's going to be - 6 * x to the 9th power, and I'm going to go on and on and on.

I could keep going. If I multiply times x cubed, I will get 6 * x to the 12th power, and we can go on and on and on and on forever. The key here was... and this is the McLaurin series expansion for our f of x, but the key is to not have to go through all of this business and just to recognize that, "Hey, the way this function was defined looks a lot like the sum of a geometric series."

It can be considered the sum of a geometric series, and we can use that to find the power series expansion for our function. This is a very, very, very useful trick.

More Articles

View All
LIVE Office Hours with Sal (Monday, May 2nd)
Hello AP Calculus students! This is Sal Khan of the Khan Academy. As we all know, the AP Calculus exams, both the AB and BC exams, are coming up this Thursday, May fifth. I’m sure you are buzzing with as much excitement as I am. In case you didn’t alread…
What Kinectimals SHOULD Be Like -- Wackygamer
Um, you turned me on to this. I missed this game. What is this game? Uh, Kinectimals! Kinectimals! For those of you who didn’t see the trailer, you can go check it out. It is a game where you have a virtual pet. There have been these games before, yeah, t…
Shape properties after a sequence of transformations
In past videos, we’ve thought about whether segment lengths or angle measures are preserved with a transformation. What we’re now going to think about is what is preserved with a sequence of transformations, and in particular, we’re going to think about a…
Going Underwater For a World Worth Protecting | Perpetual Planet: Baja
(Mellow music) - We’re 300 meters off the coast of Santo Espiritu Island, and we’re lighting an area to attract plankton. Mobulas feed on plankton. Hopefully, they’ll come close to us and we’ll be able to swim with them. (Mellow music) First, plankton com…
Crypto Will Be The 12th Sector of The S&P! | Bitcoin 2022
[Music] It’s pretty chaotic here on the first day because nobody knows where to go. There’s 50,000 people showing. The first day probably about 250,000 by the time this is over, and it’s really going to be big this year because there’s so many institution…
Artist Designs Space for All | National Geographic
In the whole time that I’ve lived in Pakistan, I may have gone inside a mosque maybe five times, and it may have been only because of tourism. So, I’ve never actually gone inside a mosque to pray. That was a public space that could have been a world of cr…