yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion (with integrals) | Applications of definite integrals | AP Calculus BC | Khan Academy


4m read
·Nov 11, 2024

A particle moving in the xy-plane has a velocity vector given by (v(t)). It just means that the x component of velocity as a function of time is (\frac{1}{t} + 7), and the y component of velocity as a function of time is (t^4) for time (t \geq 0).

At (t = 1), the particle is at the point (3, 4). So, the first part is: What is the magnitude of the displacement of the particle between time (t = 1) and (t = 3)? We need to figure out its position. We need to round to the nearest tenth.

So, like always, pause this video. I think you will have to use a calculator, but pause this video and try to work through it on your own. We have done questions like this in one dimension, but now we are doing it in two dimensions. The key is to just break it up into the component dimensions.

What we really want to do is find the displacement in the x-direction, so just the change in (x), and then find the displacement in the vertical direction, or the change in (y). We can use those to find the magnitude of the total displacement using the Pythagorean theorem.

Also, if we know the change in (x) and change in (y), we just add the change in (x) to (3) and we add the change in (y) to (4) to find the particle's position at time (t = 3). So, let's figure it out.

The change in (x) from (t = 1) to (t = 3) is the integral of the rate function in the x-direction from time (t = 1) to time (t = 3). In the x-direction, we have (\frac{1}{t} + 7) as our x-velocity as a function of time, so the integral becomes:

[
\int_1^3 \left( \frac{1}{t} + 7 \right) dt
]

What is this going to be equal to? You might want to do (u)-substitution if you're unfamiliar, but you might recognize that the derivative of (t + 7) is just (1). So, you could think of this as (1 \cdot \frac{1}{t + 7}).

We can take the anti-derivative with respect to (t + 7) and get (\ln |t + 7|). We are going to evaluate that at (3) and then subtract it evaluated at (1). So this becomes:

[
\ln |10| - \ln |8| = \ln \left( \frac{10}{8} \right) = \ln(1.25)
]

Let me get my calculator out for a second to calculate that.

Actually, let's just do this in a second. Now, let's figure out our change in (y). Our change in (y) is the integral from (1) to (3). That's our time over which we are thinking about the change. The y-component of our velocity is (t^4):

[
\int_1^3 t^4 dt
]

This will take the reverse power of rule, yielding:

[
\frac{t^5}{5} \bigg|_1^3 = \frac{3^5}{5} - \frac{1^5}{5} = \frac{243}{5} - \frac{1}{5} = \frac{242}{5}
]

That equals (48.4). Let me calculate (\ln(1.25)):

Using my calculator, (\ln(1.25)) is approximately (0.22). So, I figured out our change in (x) and our change in (y.

Actually, we can answer the second part of the question first: What is the particle's position at (t = 3)? At (t = 1), we add each of the components. So:

[
3 + \Delta x \quad \text{and} \quad 4 + \Delta y
]

This will equal (3 + 0.22) and (4 + 48.4):

[
= 3.22 \quad \text{and} \quad 52.4
]

But we still have to answer the first question: What is the magnitude of the displacement? Using the Pythagorean theorem, let's visualize it. Our initial position is at (3, 4).

So, we figured out our change in (x) isn’t much; it's (0.22). Our change in (y) is (48.4). So, we can add them together; if we shift over (0.22) in the x-direction and go for a dramatic change of (48.4) upwards, we can find the hypotenuse.

The magnitude of the displacement is going to be:

[
\sqrt{(\Delta x)^2 + (\Delta y)^2}
]

So we’ll calculate this:

[
\sqrt{(0.22)^2 + (48.4)^2}
]

Let me get my calculator out again for this.

After squaring (0.22) and (48.4), I'll take the square root of that. Our total, the magnitude of our total displacement, is approximately (48.4) when rounded to the nearest tenth.

Now, one thing you might be noting is that it looks like our total displacement (48.4) is the same as our change in (y). The reason it came out this way is because our change in (y) was exactly (48.4) while the magnitude of our displacement was slightly more than (48.4).

But when we round to the nearest tenth, we got (48.4). The reason they’re so close is because our change in (x) was small, at (0.22), while our change in (y) was so significant, resulting in the hypotenuse being only slightly longer than our change in (y).

Thus, in general, you will see that the magnitude of the displacement is larger than the magnitude of either change in (x) or change in (y) alone.

More Articles

View All
Ryan Serhant: How to Sell a BILLION DOLLARS of Real Estate Per Year!
[Music] I’m introducing you in this video. There we go. You gotta say what’s up. You guys, it’s Graham here. What’s up you guys, it’s Graham here! Welcome to the greatest real estate investor podcast and YouTube in the entire world. Do you ever guess? Ye…
How to motivate and engage your kids in learning while at home
Hey everyone, welcome to our webinar! My name is Lauren Kwan, and I’m on the Khan Academy team. Today, I am joined by my co-worker, Dan Tu, and our special guest, Connor Corey. Connor is an expert teacher, a parent, and a Khan Academy ambassador, which me…
My Guy Spier Interview: Investing During an Economic Crisis
Right now, the global economy is facing a crisis on the scale not seen since the Great Recession of 2008. But what on Earth do we do about it as investors? The annual inflation rate in the United States sits at a staggering six percent. Interest rates are…
The Most Powerful Mindset for Success
There is a psychological trait that all successful people appear to have in common. It’s been cosigned by Bill Gates and NASA uses it as a criteria for selecting potential Systems Engineers. This concept is called the growth mindset, a term originally coi…
TIL: Choosing a Mars Landing Spot is Harder Than You Think | Today I Learned
If you have an entire planet to explore, where do you go? Mars is a place where we can get rovers on the ground, but what is the one site that will tell us the most about Mars? So first, can we land there? Is it safe? Second, do we want to land there, an…
Top 4 Qualities To Be A Successful Entrepreneur | The Geisha Teahouse NFT
[Music] With all the successes that you’ve had, given— and obviously you went through failures as well as successes throughout your career. Now, if you could travel back in time and meet your younger self, what would be like the piece of advice that you’…