yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion (with integrals) | Applications of definite integrals | AP Calculus BC | Khan Academy


4m read
·Nov 11, 2024

A particle moving in the xy-plane has a velocity vector given by (v(t)). It just means that the x component of velocity as a function of time is (\frac{1}{t} + 7), and the y component of velocity as a function of time is (t^4) for time (t \geq 0).

At (t = 1), the particle is at the point (3, 4). So, the first part is: What is the magnitude of the displacement of the particle between time (t = 1) and (t = 3)? We need to figure out its position. We need to round to the nearest tenth.

So, like always, pause this video. I think you will have to use a calculator, but pause this video and try to work through it on your own. We have done questions like this in one dimension, but now we are doing it in two dimensions. The key is to just break it up into the component dimensions.

What we really want to do is find the displacement in the x-direction, so just the change in (x), and then find the displacement in the vertical direction, or the change in (y). We can use those to find the magnitude of the total displacement using the Pythagorean theorem.

Also, if we know the change in (x) and change in (y), we just add the change in (x) to (3) and we add the change in (y) to (4) to find the particle's position at time (t = 3). So, let's figure it out.

The change in (x) from (t = 1) to (t = 3) is the integral of the rate function in the x-direction from time (t = 1) to time (t = 3). In the x-direction, we have (\frac{1}{t} + 7) as our x-velocity as a function of time, so the integral becomes:

[
\int_1^3 \left( \frac{1}{t} + 7 \right) dt
]

What is this going to be equal to? You might want to do (u)-substitution if you're unfamiliar, but you might recognize that the derivative of (t + 7) is just (1). So, you could think of this as (1 \cdot \frac{1}{t + 7}).

We can take the anti-derivative with respect to (t + 7) and get (\ln |t + 7|). We are going to evaluate that at (3) and then subtract it evaluated at (1). So this becomes:

[
\ln |10| - \ln |8| = \ln \left( \frac{10}{8} \right) = \ln(1.25)
]

Let me get my calculator out for a second to calculate that.

Actually, let's just do this in a second. Now, let's figure out our change in (y). Our change in (y) is the integral from (1) to (3). That's our time over which we are thinking about the change. The y-component of our velocity is (t^4):

[
\int_1^3 t^4 dt
]

This will take the reverse power of rule, yielding:

[
\frac{t^5}{5} \bigg|_1^3 = \frac{3^5}{5} - \frac{1^5}{5} = \frac{243}{5} - \frac{1}{5} = \frac{242}{5}
]

That equals (48.4). Let me calculate (\ln(1.25)):

Using my calculator, (\ln(1.25)) is approximately (0.22). So, I figured out our change in (x) and our change in (y.

Actually, we can answer the second part of the question first: What is the particle's position at (t = 3)? At (t = 1), we add each of the components. So:

[
3 + \Delta x \quad \text{and} \quad 4 + \Delta y
]

This will equal (3 + 0.22) and (4 + 48.4):

[
= 3.22 \quad \text{and} \quad 52.4
]

But we still have to answer the first question: What is the magnitude of the displacement? Using the Pythagorean theorem, let's visualize it. Our initial position is at (3, 4).

So, we figured out our change in (x) isn’t much; it's (0.22). Our change in (y) is (48.4). So, we can add them together; if we shift over (0.22) in the x-direction and go for a dramatic change of (48.4) upwards, we can find the hypotenuse.

The magnitude of the displacement is going to be:

[
\sqrt{(\Delta x)^2 + (\Delta y)^2}
]

So we’ll calculate this:

[
\sqrt{(0.22)^2 + (48.4)^2}
]

Let me get my calculator out again for this.

After squaring (0.22) and (48.4), I'll take the square root of that. Our total, the magnitude of our total displacement, is approximately (48.4) when rounded to the nearest tenth.

Now, one thing you might be noting is that it looks like our total displacement (48.4) is the same as our change in (y). The reason it came out this way is because our change in (y) was exactly (48.4) while the magnitude of our displacement was slightly more than (48.4).

But when we round to the nearest tenth, we got (48.4). The reason they’re so close is because our change in (x) was small, at (0.22), while our change in (y) was so significant, resulting in the hypotenuse being only slightly longer than our change in (y).

Thus, in general, you will see that the magnitude of the displacement is larger than the magnitude of either change in (x) or change in (y) alone.

More Articles

View All
Rewriting roots as rational exponents | Mathematics I | High School Math | Khan Academy
We’re asked to determine whether each expression is equivalent to the seventh root of v to the third power. And like always, pause the video and see if you can figure out which of these are equivalent to the seventh root of v to the third power. Well, a …
Ancient Egypt 101 | National Geographic
The ancient Egyptian civilization lasted for over 3,000 years and became one of the most powerful and iconic civilizations in history. At its height, ancient Egypt’s empire stretched as far north as modern-day Syria and as far south as today’s Sudan. But …
Ride Along With a Team of Lion Protectors | Expedition Raw
Right now, we’re looking for a group of lions that we heard were in the area. When we locate them, we want to pass this information on to the lion anti-snaring team so that they can come to the area, check it for snares, and prevent any lions from getting…
Rescue Scenarios with Better Technology | Breakthrough
Hi, I’m Tim Maloney, Vice President of Operations here at Guardian Centers. Guardian Centers was built in response to historical events. Hurricane Katrina and Sandy would be on the forefront of the decision-making process. We have set up national exercis…
How we maintain discretion at The Jet Business.
I’ve met with a lot of famous people and celebrities both personally in my social circles and professionally. But, of course, most people who are buying or selling their airplane are pretty confidential about the situation, so we usually don’t try to shar…
Area of trapezoid on the coordinate plane | High School Math | Khan Academy
So we have a trapezoid here on the coordinate plane, and what we want to do is find the area of this trapezoid just given this diagram. Like always, pause this video and see if you can figure it out. Well, we know how to figure out the area of a trapezoi…