yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Planar motion (with integrals) | Applications of definite integrals | AP Calculus BC | Khan Academy


4m read
·Nov 11, 2024

A particle moving in the xy-plane has a velocity vector given by (v(t)). It just means that the x component of velocity as a function of time is (\frac{1}{t} + 7), and the y component of velocity as a function of time is (t^4) for time (t \geq 0).

At (t = 1), the particle is at the point (3, 4). So, the first part is: What is the magnitude of the displacement of the particle between time (t = 1) and (t = 3)? We need to figure out its position. We need to round to the nearest tenth.

So, like always, pause this video. I think you will have to use a calculator, but pause this video and try to work through it on your own. We have done questions like this in one dimension, but now we are doing it in two dimensions. The key is to just break it up into the component dimensions.

What we really want to do is find the displacement in the x-direction, so just the change in (x), and then find the displacement in the vertical direction, or the change in (y). We can use those to find the magnitude of the total displacement using the Pythagorean theorem.

Also, if we know the change in (x) and change in (y), we just add the change in (x) to (3) and we add the change in (y) to (4) to find the particle's position at time (t = 3). So, let's figure it out.

The change in (x) from (t = 1) to (t = 3) is the integral of the rate function in the x-direction from time (t = 1) to time (t = 3). In the x-direction, we have (\frac{1}{t} + 7) as our x-velocity as a function of time, so the integral becomes:

[
\int_1^3 \left( \frac{1}{t} + 7 \right) dt
]

What is this going to be equal to? You might want to do (u)-substitution if you're unfamiliar, but you might recognize that the derivative of (t + 7) is just (1). So, you could think of this as (1 \cdot \frac{1}{t + 7}).

We can take the anti-derivative with respect to (t + 7) and get (\ln |t + 7|). We are going to evaluate that at (3) and then subtract it evaluated at (1). So this becomes:

[
\ln |10| - \ln |8| = \ln \left( \frac{10}{8} \right) = \ln(1.25)
]

Let me get my calculator out for a second to calculate that.

Actually, let's just do this in a second. Now, let's figure out our change in (y). Our change in (y) is the integral from (1) to (3). That's our time over which we are thinking about the change. The y-component of our velocity is (t^4):

[
\int_1^3 t^4 dt
]

This will take the reverse power of rule, yielding:

[
\frac{t^5}{5} \bigg|_1^3 = \frac{3^5}{5} - \frac{1^5}{5} = \frac{243}{5} - \frac{1}{5} = \frac{242}{5}
]

That equals (48.4). Let me calculate (\ln(1.25)):

Using my calculator, (\ln(1.25)) is approximately (0.22). So, I figured out our change in (x) and our change in (y.

Actually, we can answer the second part of the question first: What is the particle's position at (t = 3)? At (t = 1), we add each of the components. So:

[
3 + \Delta x \quad \text{and} \quad 4 + \Delta y
]

This will equal (3 + 0.22) and (4 + 48.4):

[
= 3.22 \quad \text{and} \quad 52.4
]

But we still have to answer the first question: What is the magnitude of the displacement? Using the Pythagorean theorem, let's visualize it. Our initial position is at (3, 4).

So, we figured out our change in (x) isn’t much; it's (0.22). Our change in (y) is (48.4). So, we can add them together; if we shift over (0.22) in the x-direction and go for a dramatic change of (48.4) upwards, we can find the hypotenuse.

The magnitude of the displacement is going to be:

[
\sqrt{(\Delta x)^2 + (\Delta y)^2}
]

So we’ll calculate this:

[
\sqrt{(0.22)^2 + (48.4)^2}
]

Let me get my calculator out again for this.

After squaring (0.22) and (48.4), I'll take the square root of that. Our total, the magnitude of our total displacement, is approximately (48.4) when rounded to the nearest tenth.

Now, one thing you might be noting is that it looks like our total displacement (48.4) is the same as our change in (y). The reason it came out this way is because our change in (y) was exactly (48.4) while the magnitude of our displacement was slightly more than (48.4).

But when we round to the nearest tenth, we got (48.4). The reason they’re so close is because our change in (x) was small, at (0.22), while our change in (y) was so significant, resulting in the hypotenuse being only slightly longer than our change in (y).

Thus, in general, you will see that the magnitude of the displacement is larger than the magnitude of either change in (x) or change in (y) alone.

More Articles

View All
What’s Hiding at the Most Solitary Place on Earth? The Deep Sea
Sometimes the world feels… hmm, boring. We’ve visited all the remote islands, conquered the Arctic, and penetrated the deepest jungles. But there is still one place to explore. It’s a wet and deadly desert inhabited by mysterious creatures living in total…
Angela Duckworth talks about helping children develop grit and resiliance | Homeroom with Sal
Hi everyone! Welcome to the daily homeroom live stream style here from Khan Academy. For those of you all who are new to this, this is a live stream that we’ve been doing every day since we’ve had these global school closures, just as a way to stay connec…
Rainwater Observatory
On a recent trip to rural Mississippi to see some friends of ours who had just had their second kid, my wife and I stumbled upon something pretty odd for a small town in Mississippi. Near the town of French Camp, just off the Natchez Trace Parkway, there’…
The Stock Market Is About To Flip
What’s down you guys? It’s Graham here. So, as we start off the new year of 2021, we have to talk about something that’s been brought up a lot lately, especially now that the stock market is near its all-time high, and that has to do with our stock marke…
Renewable and Nonrenewable Energy Resources | AP Environmental Science | Khan Academy
Today, let’s talk about energy resources. You’ve probably already done something today that used energy resources, even beginning from the moment you woke up. For me, the beginning of my day always starts with making tea. I use energy in every step of thi…
Catch of the Week - Wicked Ride | Wicked Tuna: Outer Banks
[Applause] [Music] [Applause] But the forecast, as bad as it is, I want to try to catch one and get the heck out of here as soon as we can. We’re marking them, D. We got a tun on! He is pulling! Oh my gosh, he’s pulling! There’s color right here! I can…