yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Parametric arc length | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's say that X is a function of the parameter T, and it's equal to cosine of T, and Y is also defined as a function of T, and it's equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to T equals Pi/2.

So pause this video and see if you can work that out based on formulas that we have seen in other videos.

All right, so first I'm going to look at the formula, and then we're going to visualize it and appreciate why what we got from the formula actually makes sense.

The formula tells us that the arc length of a parametric curve is equal to the integral from our starting point of our parameter T equals a to our ending point of our parameter T equals B of the square root of the derivative of x with respect to T squared plus the derivative of y with respect to T squared dT.

This could also be rewritten as this is equal to the integral from A to B of the square root of (dx/dt)² + (dy/dt)² dT, but either way, we can now apply it in this context.

What is dx/dt? So dx/dt is equal to the derivative of cosine of T, which is equal to negative sine of T. And what is dy/dt? The derivative of y with respect to T, the derivative of sine of T, is cosine of T.

So our arc length up here is going to be equal to the integral from T equals 0 to Pi/2. That's what we care about—our parameter is going from 0 to Pi/2—of the square root of the derivative of x with respect to T squared, which is negative sine of T squared.

Well, if you square it, the negative is going to go away. Negative sine times negative sine is positive sine squared. So I could write this as sine²(T) and then (dy/dt) is just cosine of T, plus cosine²(T), and then we have our dT out here.

Now, lucky for us, sine² plus cosine² of some variable is always going to be equal to one. So that just—that's one of our most basic trig identities, coming straight out of the unit circle definition of sine and cosine.

And so we have the square root of one, the principal root of one, which is just going to be one. So all of this thing, everything here, has just simplified to the integral from 0 to Pi/2 dT.

Well, this is going to be equal to—you can view this as a one here—the anti-derivative of one with respect to T is just going to be T. We're going to evaluate that from Pi/2. We're going to evaluate that at Pi/2 and then subtract it evaluated at zero.

So this is going to be equal to Pi/2 - 0. That's going to be equal to Pi/2.

Now let's think about why this actually does make sense. Let's plot this curve. So that is my y-axis; this is my x-axis right over here. When T is equal to 0, you have X of 0, which is cosine of 0. X is equal to 1, and Y of 0 is just zero. So Y is equal to zero, so we're at this point right over here when T is equal to zero.

And then as T increases up to Pi/2, we trace out the top right corner of the unit circle, and we end up right over here when T is equal to Pi/2. You could view T in this case as some type of an angle in radians, and so the arc length is really just the length of a quarter of a unit circle.

Well, we know what the circumference of a circle is: it is 2πr. In the unit circle's case, the radius is one, so the circumference of the entire circle is 2π. One-fourth of that is going to be π/2.

So it's nice when this fancy thing that we feel good about in calculus is consistent with what we first learned in basic geometry.

More Articles

View All
Camp Hailstone | Life Below Zero
My name is Ignacio Stone. I’m married to Edward Hale Stone. We call him Chip. I’m Edward Hale Stone, master of systems, hunter. I’m a subsistence gatherer, fisherman. I’m married to Agnes, and I have five daughters. I tried to get them all involved in eve…
NERD WARS: Altair & Ezio Vs. Daredevil
It was Jeff Ryman. This is Anna McLaughlin. We’re coming at you with another Nerd Wars. This one: Altair versus Daredevil. Oh my god, I am going to win so easy, as always! I will be taking the superhero Daredevil, and I’m gonna get gas. And I’m gonna be t…
How Gen Alpha Will Change Society Forever
Gen Alpha is the first generation of humans to be born with access to mobile technology. By the age of two, many Gen Alpha toddlers can already interact with these devices in meaningful ways. Beyond watching Cocomelon on YouTube, they can navigate the app…
dining in a super fancy restaurant with my mom VLOG✨
I love fine dining not because it’s tasty and expensive to prove people that I’m a woman of culture. I love it because you can see the chef’s passion for making that dish, giving everything they have and being proud of it. I appreciate the craftsmanship i…
7 Most ANNOYING Online Gamers: V-LIST #3
Hey everyone! I’m Lacy, and this is BTW on Bauce. This week, I’m talking about online gaming, specifically the people that you meet online. You know exactly who I’m talking about. They’re the people that are always there, and they always annoy you, and ye…
Example dividing a whole by a unit fraction
Let’s think about what 3 divided by 1⁄4 is equal to. Pause this video and see if you can figure it out on your own. And I’ll give you a hint: take three holes and divide it into pieces, or sections, that are each one-fourth of a hole. Then think about how…