yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Parametric arc length | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's say that X is a function of the parameter T, and it's equal to cosine of T, and Y is also defined as a function of T, and it's equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to T equals Pi/2.

So pause this video and see if you can work that out based on formulas that we have seen in other videos.

All right, so first I'm going to look at the formula, and then we're going to visualize it and appreciate why what we got from the formula actually makes sense.

The formula tells us that the arc length of a parametric curve is equal to the integral from our starting point of our parameter T equals a to our ending point of our parameter T equals B of the square root of the derivative of x with respect to T squared plus the derivative of y with respect to T squared dT.

This could also be rewritten as this is equal to the integral from A to B of the square root of (dx/dt)² + (dy/dt)² dT, but either way, we can now apply it in this context.

What is dx/dt? So dx/dt is equal to the derivative of cosine of T, which is equal to negative sine of T. And what is dy/dt? The derivative of y with respect to T, the derivative of sine of T, is cosine of T.

So our arc length up here is going to be equal to the integral from T equals 0 to Pi/2. That's what we care about—our parameter is going from 0 to Pi/2—of the square root of the derivative of x with respect to T squared, which is negative sine of T squared.

Well, if you square it, the negative is going to go away. Negative sine times negative sine is positive sine squared. So I could write this as sine²(T) and then (dy/dt) is just cosine of T, plus cosine²(T), and then we have our dT out here.

Now, lucky for us, sine² plus cosine² of some variable is always going to be equal to one. So that just—that's one of our most basic trig identities, coming straight out of the unit circle definition of sine and cosine.

And so we have the square root of one, the principal root of one, which is just going to be one. So all of this thing, everything here, has just simplified to the integral from 0 to Pi/2 dT.

Well, this is going to be equal to—you can view this as a one here—the anti-derivative of one with respect to T is just going to be T. We're going to evaluate that from Pi/2. We're going to evaluate that at Pi/2 and then subtract it evaluated at zero.

So this is going to be equal to Pi/2 - 0. That's going to be equal to Pi/2.

Now let's think about why this actually does make sense. Let's plot this curve. So that is my y-axis; this is my x-axis right over here. When T is equal to 0, you have X of 0, which is cosine of 0. X is equal to 1, and Y of 0 is just zero. So Y is equal to zero, so we're at this point right over here when T is equal to zero.

And then as T increases up to Pi/2, we trace out the top right corner of the unit circle, and we end up right over here when T is equal to Pi/2. You could view T in this case as some type of an angle in radians, and so the arc length is really just the length of a quarter of a unit circle.

Well, we know what the circumference of a circle is: it is 2πr. In the unit circle's case, the radius is one, so the circumference of the entire circle is 2π. One-fourth of that is going to be π/2.

So it's nice when this fancy thing that we feel good about in calculus is consistent with what we first learned in basic geometry.

More Articles

View All
How the comfort zone is ruining your life
[Music] There’s a weird phenomenon I’ve noticed all throughout my life where the more I subject myself to discomfort, the happier I am. I think this phenomenon became increasingly apparent to me in first year of university where I wanted to make the best …
Dominoes - HARDCORE Mode - Smarter Every Day 182
Okay, let’s just get this out there right now. I know this is weird. You probably watch this channel because you want to see slow motion phenomenon of like bullets hitting stuff, and fracture mechanics, and water drops bouncing, and animals squirting thin…
YC Tech Talks: Designing from Day One: Artists as Founders with Multiverse (S20)
Um, so we’re multiverse. We did YC W20, so that was from like January to March of this year, just before corona hit. You know, multiverse, we’re making next generation tabletop RPGs. You can think of us like a mix between, you know, DnD and Roblox. We wa…
Atheists: Let's Talk About The State
A few weeks ago, the YouTube user Krishna Scrub 047 sent me a link to a few videos by the user Confederal Socialist. I enjoyed watching them, and they got me thinking seriously about the idea of a stateless society. So, I’m currently reading around the su…
Invalid conclusions from studies example | Study design | AP Statistics | Khan Academy
Jerry was reading about a study that looked at the connection between smartphone usage and happiness. Based on data from approximately 5,000 randomly selected teenagers, the study found that, on average, the teens who spent more time on smartphones were s…
Overview of ancient Greece | World History | Khan Academy
I am now going to give an overview of ancient Greece. In future videos, we’re going to go into a lot more depth on a lot of these events and ideas, but this one is to give you context on the big picture. Just to start, let’s begin with the name Greece. I…