yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing exponential models | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

Derek sent a chain letter to his friends, asking them to forward the letter to more friends. The group of people who receive the email gains 910 of its size every 3 weeks and can be modeled by a function P, which depends on the amount of time T in weeks. Derek initially sent the chain letter to 40 friends.

Write a function that models the group of people who receive the email T weeks since Derek initially sent the chain letter. So pause the video if you want to have a go at this.

All right, now the way I like to think about these, let's just create a table with values for T and our function P, which is a function of T, for some values that we can just pull out of the description here.

So when T is zero, when it's been zero weeks since Derek initially sent the chain letter, how many people have gotten it? What they tell us is that Derek initially sent the chain letter to 40 friends. So T equals 0, P of T, or P of 0, is 40.

Now, what's an interesting time period here? It says that the email, the number of people who've received the email, gains 910 or increases by 910 every three weeks. Every three weeks, so after three weeks, so three weeks have gone by.

So, I'm just adding three to T. What is P of T going to be? Well, they tell us it's going to gain 910 of its size. So it's going to be 40 plus 910 times 40, which is going to be equal to what?

Well, that's equal to 40. If we factor out 40, we get 40 * (1 + 910), or you could say this is equal to 40 times... whoops, 40 times 1.9, or another way of thinking about it, after 3 weeks, we've grown 90%.

That's another way of saying that the number of people who receive the email gains 910 of its size. You could say the group of people who receive the email grows 90% every 3 weeks.

And so if we go another 3 weeks, so plus another three weeks, I could say, well, let me just write this as six weeks. Well, how many people will have received the email?

Well, it's going to be this number, and it's going to be grown another 90%. So we're going to multiply it times 1.9 again. So it's going to be 40 times 1.9 times 1.9.

We're going to grow by another 910. Growing by 910 is the same thing as multiplying by one and 910. The one is what you already are, and then you're growing by another 910.

So this is the same thing as 40 * (1.9 squared). You go another 3 weeks, nine weeks, where you're going to grow another 90%. So you're going to take this number and multiply by 1.9 again, which is going to be 1.9 to the 3rd power.

And so what's going on over here? Well, we can see it's an exponential function. We have our initial value, and every 3 weeks, we're multiplying by 1.9.

So 1.9 would be our common ratio. So we could say that P of T is equal to our initial value, 40, times our common ratio, 1.9.

And we multiply by 1.9 every three weeks. So we could just say how many 3-week periods have passed by. Well, we would take T and divide it by three.

T divided by three is the number of 3-week periods that have gone by. And there you have it. Notice T equals 0, 1.9 to the 0th power is 1.

So 40 * 1, T = 3, that's going to be 1.9 to the 1st power. 3 over 3, and so we're going to grow by 90% and so on and so forth. So feeling pretty good about this.

More Articles

View All
Our Greatest Delusion
I’m not sure what I expected to find when I went to Chernobyl. I mean, it’s been so long since the nuclear reactor there melted down and spewed radioactive atoms across the land. So for almost thirty years, this place has been virtually abandoned. These d…
The internet weirdo to creator of new industries pipeline
When you are part of the history being made and you’re this early on The Cutting Edge of a new tech coming out, you can’t expect your university, no, or your teachers, or people in your community, or your peers to teach you about it. It’s only basically w…
I Bought a Rain Forest, Part 1 | Nat Geo Live
I went on a journey and I went all over the Amazon to try and find out the truth about the Amazon. This idea of these nasty people destroying the Amazon, they’re not. They are just people trying to make a living. And what I saw was this endless poverty tr…
Kathryn Minshew at Startup School NY 2014
Next you’re gonna hear from Kathryn Minshew. Kathryn is the CEO and founder of The Muse. So, The Muse is a job discovery tool that’s helping one million people a month find the career, find careers at awesome companies. So, Kathryn has heard me say this b…
The Inverse Leidenfrost Effect
Now you’ve probably heard of the Leidenfrost effect. That’s when a volatile droplet like water levitates over a hot surface because it’s floating on a little cushion of its own vapor. Here I’m gonna try to create the inverse Leidenfrost effect where we le…
The Berkshire Empire: Hidden Truth of Buffett and Munger's Success | 2023 Documentary
After winning a hostile takeover battle against Berkshire Hathaway, Buffett now fully controls the textile company. But he quickly realizes that he has made a grave mistake. Part of the partnership was buying what looked like cheap stocks; Berkshire Hatha…