yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ionic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Most of what we've talked about so far has been atoms in isolation. We have thought about the number of electrons and protons and neutrons and the electron configuration of atoms. But atoms don't just operate in isolation. If that were the case, the whole universe, including us, would just be a bunch of atoms drifting around.

What begins to be interesting is how the atoms actually interact with each other. One of the most interesting forms of interaction is when they stick to each other in some way, shape, or form. This sticking together of atoms is what we are going to study in this video. Another way to talk about it is, how do atoms bond?

Now, as we will see, there are several types of bonds, and it's really a spectrum. But let's just start with what I would consider one of the more extreme types of bonds. To understand it, let's get a periodic table of elements out right over here. So let's say that we are dealing with a group one element—let's say sodium, right over here.

What's interesting about group one elements is that they have one valence electron. If we want to visualize the valence electrons for, say, sodium, we could do it with what's known as a Lewis dot structure or a Lewis electron dot structure. Sometimes it’s just called a dot structure for short. But because a neutral sodium has one valence electron, we would just draw that one valence electron like that.

Now, let's go to the other end of the periodic table and say, look at chlorine. Chlorine is a halogen. Halogens have seven valence electrons, so chlorine's valence electrons would look like this: it has one, two, three, four, five, six, seven valence electrons. You can imagine chlorine would love to get another electron in order to complete its outer shell.

We've also studied in other videos these atoms, these elements at the top right of the periodic table, which are not the noble gases, but especially the top of these halogens. Things like oxygen and nitrogen—these are very electronegative. They like to pull electrons, hog electrons.

So, what do you think is going to happen when you put these characters together? This guy wants to lose the electrons, and chlorine wants to gain an electron. Well, maybe the chlorine will take an electron from the sodium. Now, in a real chemical reaction, you would have trillions of these, and they're bouncing around and different things are happening.

But for simplicity, let's just imagine that these are the only two. And let's imagine that this chlorine is able to nab an electron from this sodium. So what is going to happen? Well, this sodium is then going to become positively charged because it's going to lose an electron.

Then the chlorine is now going to gain an electron, so it's going to become a chloride anion. An anion is a negative ion; it's a sodium cation, a positive ion. Ion means it's charged, and now it’s a chloride anion. So it has the valence electrons that it had before, and then you could imagine that it gains one from the sodium and now it has a negative charge.

Now, what do we know about positively charged ions and negatively charged ions? Well, opposites attract—Coulomb forces. So these two characters are going to be attracted to each other. Or another way to think of it, they’re going to stick together. Or another way you think about it is they are going to be bonded.

They will form a compound of sodium chloride, and notice the whole compound here is neutral. It has a plus one charge for the sodium, a negative one charge for the chloride, but taken together it is neutral because these are hanging out together.

And this type of bond between ions, you might guess what it's called. It is called an ionic bond. Ionic bond.

More Articles

View All
Complex rotation
So now we’ve seen rotation by multiplying J by J over and over again, and we see that that’s rotation. Now let’s do it for the general idea of any complex number. So if I have a complex number, we’ll call it Z, and we’ll say it’s made of two parts: a rea…
Drew Houston : How to Build the Future
Hi, I’m Sam Alden. This is “How to Build the Future.” Our guest today is Drew Houston. Thank you for taking the time. Thanks for having me! So, you were in Y Combinator with Dropbox in the summer of 2007? That’s right. How did you come up with the ide…
Michael Burry Is Predicting an Even Bigger Crash.
As you guys probably saw from my video a few weeks ago, Michael Burry, the man that famously predicted the ‘08 housing bubble, is currently predicting another very large recession and stock market crash in 2022 on the back of all the inflation we’re curre…
ROBINHOOD STRIKES BACK - THEIR RESPONSE!
Well, ladies and gentlemen, it happened. Amid all the controversy surrounding the recent $0 trade announcement started by the internet bully Charles Schwab, Robin Hood just seemed like it was destined for loss with no competitive advantage whatsoever. Tha…
How McDonalds Is Taking Over The World
Every 5 hours, somewhere in the world, a new McDonald’s pops up. It’s been said that McDonald’s is one of the very few businesses that will always be profitable and recession-proof. And once you look at the stock, it seems to be true. So how did McDonald’…
Differentiating functions: Find the error | Derivative rules | AP Calculus AB | Khan Academy
We’re going to do in this video is look at the work of other people as they try to take derivatives and see if their reasoning is correct, and if it’s not correct, try to identify what they should have done or where their reasoning went wrong. So over he…