yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ionic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Most of what we've talked about so far has been atoms in isolation. We have thought about the number of electrons and protons and neutrons and the electron configuration of atoms. But atoms don't just operate in isolation. If that were the case, the whole universe, including us, would just be a bunch of atoms drifting around.

What begins to be interesting is how the atoms actually interact with each other. One of the most interesting forms of interaction is when they stick to each other in some way, shape, or form. This sticking together of atoms is what we are going to study in this video. Another way to talk about it is, how do atoms bond?

Now, as we will see, there are several types of bonds, and it's really a spectrum. But let's just start with what I would consider one of the more extreme types of bonds. To understand it, let's get a periodic table of elements out right over here. So let's say that we are dealing with a group one element—let's say sodium, right over here.

What's interesting about group one elements is that they have one valence electron. If we want to visualize the valence electrons for, say, sodium, we could do it with what's known as a Lewis dot structure or a Lewis electron dot structure. Sometimes it’s just called a dot structure for short. But because a neutral sodium has one valence electron, we would just draw that one valence electron like that.

Now, let's go to the other end of the periodic table and say, look at chlorine. Chlorine is a halogen. Halogens have seven valence electrons, so chlorine's valence electrons would look like this: it has one, two, three, four, five, six, seven valence electrons. You can imagine chlorine would love to get another electron in order to complete its outer shell.

We've also studied in other videos these atoms, these elements at the top right of the periodic table, which are not the noble gases, but especially the top of these halogens. Things like oxygen and nitrogen—these are very electronegative. They like to pull electrons, hog electrons.

So, what do you think is going to happen when you put these characters together? This guy wants to lose the electrons, and chlorine wants to gain an electron. Well, maybe the chlorine will take an electron from the sodium. Now, in a real chemical reaction, you would have trillions of these, and they're bouncing around and different things are happening.

But for simplicity, let's just imagine that these are the only two. And let's imagine that this chlorine is able to nab an electron from this sodium. So what is going to happen? Well, this sodium is then going to become positively charged because it's going to lose an electron.

Then the chlorine is now going to gain an electron, so it's going to become a chloride anion. An anion is a negative ion; it's a sodium cation, a positive ion. Ion means it's charged, and now it’s a chloride anion. So it has the valence electrons that it had before, and then you could imagine that it gains one from the sodium and now it has a negative charge.

Now, what do we know about positively charged ions and negatively charged ions? Well, opposites attract—Coulomb forces. So these two characters are going to be attracted to each other. Or another way to think of it, they’re going to stick together. Or another way you think about it is they are going to be bonded.

They will form a compound of sodium chloride, and notice the whole compound here is neutral. It has a plus one charge for the sodium, a negative one charge for the chloride, but taken together it is neutral because these are hanging out together.

And this type of bond between ions, you might guess what it's called. It is called an ionic bond. Ionic bond.

More Articles

View All
Building a Tree Stand in the Arctic | Life Below Zero
[Music] Gonna swing when it comes off that corner. Put it down, just let it go. Relax, it’s not gonna go anywhere. That’s a lot better there than a minute ago, swinging off the ladder. Fortunately, no accidents happened. A couple of times, some good close…
Leafcutter Ants Slice Leaves for the Colony | A Real Bug's Life | National Geographic
Finally, our little leafcutter has reached the canopy. So, this is where the harvest happens? Everyone’s working hard before the weather turns. Slicing through leaves and bouncing their booties as they go. It creates rhythmic vibrations that other ants fe…
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…
The Next Market Crash - 7 Ways To Make Money
What’s up, you guys? It’s Graham here. So I feel like it’s time we address something that probably a lot of us have recently considered, and that would be the next stock market crash. After all, in the last week, the stock market has risen to brand new re…
How to be a Pirate Quartermaster. 📈 💎 📈
(Recruit) So how does this work exactly? (Quartermaster) If you’d like to be a pirate, you need to understand it is a business. You can’t have a crew or a ship or a brand without a business model to support them. But pirate business is like any other. Ma…
Charlie Munger on Investing in China and Alibaba Stock
All right, we’re back with more from Charlie Monga’s recent Q&A session at the Daily Journal Corporation’s annual shareholder meeting. So, last time we spoke about Charlie’s thoughts on inflation and interest rates. Um, I’ll link to that video if you…