yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ionic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Most of what we've talked about so far has been atoms in isolation. We have thought about the number of electrons and protons and neutrons and the electron configuration of atoms. But atoms don't just operate in isolation. If that were the case, the whole universe, including us, would just be a bunch of atoms drifting around.

What begins to be interesting is how the atoms actually interact with each other. One of the most interesting forms of interaction is when they stick to each other in some way, shape, or form. This sticking together of atoms is what we are going to study in this video. Another way to talk about it is, how do atoms bond?

Now, as we will see, there are several types of bonds, and it's really a spectrum. But let's just start with what I would consider one of the more extreme types of bonds. To understand it, let's get a periodic table of elements out right over here. So let's say that we are dealing with a group one element—let's say sodium, right over here.

What's interesting about group one elements is that they have one valence electron. If we want to visualize the valence electrons for, say, sodium, we could do it with what's known as a Lewis dot structure or a Lewis electron dot structure. Sometimes it’s just called a dot structure for short. But because a neutral sodium has one valence electron, we would just draw that one valence electron like that.

Now, let's go to the other end of the periodic table and say, look at chlorine. Chlorine is a halogen. Halogens have seven valence electrons, so chlorine's valence electrons would look like this: it has one, two, three, four, five, six, seven valence electrons. You can imagine chlorine would love to get another electron in order to complete its outer shell.

We've also studied in other videos these atoms, these elements at the top right of the periodic table, which are not the noble gases, but especially the top of these halogens. Things like oxygen and nitrogen—these are very electronegative. They like to pull electrons, hog electrons.

So, what do you think is going to happen when you put these characters together? This guy wants to lose the electrons, and chlorine wants to gain an electron. Well, maybe the chlorine will take an electron from the sodium. Now, in a real chemical reaction, you would have trillions of these, and they're bouncing around and different things are happening.

But for simplicity, let's just imagine that these are the only two. And let's imagine that this chlorine is able to nab an electron from this sodium. So what is going to happen? Well, this sodium is then going to become positively charged because it's going to lose an electron.

Then the chlorine is now going to gain an electron, so it's going to become a chloride anion. An anion is a negative ion; it's a sodium cation, a positive ion. Ion means it's charged, and now it’s a chloride anion. So it has the valence electrons that it had before, and then you could imagine that it gains one from the sodium and now it has a negative charge.

Now, what do we know about positively charged ions and negatively charged ions? Well, opposites attract—Coulomb forces. So these two characters are going to be attracted to each other. Or another way to think of it, they’re going to stick together. Or another way you think about it is they are going to be bonded.

They will form a compound of sodium chloride, and notice the whole compound here is neutral. It has a plus one charge for the sodium, a negative one charge for the chloride, but taken together it is neutral because these are hanging out together.

And this type of bond between ions, you might guess what it's called. It is called an ionic bond. Ionic bond.

More Articles

View All
Introduction to exponential decay
What we’re going to do in this video is quickly review exponential growth and then use that as our platform to introduce ourselves to exponential decay. So let’s review exponential growth. Let’s say we have something that… and I’ll do this on a table here…
Anand Varma Captures a Honey Bee Story | Photographer | National Geographic
After “Parasites,” National Geographic asked me to do a story about the decline of honeybee populations. I was like, “Wow, they believe in me; they’re ready to give me another story.” It was like, “Oh, yeah, yeah, yeah, great, cool. This’ll be no problem.…
Homeroom with Sal & Jacquelline Fuller - Thursday, July 16
Hi everyone! Welcome to our homeroom livestream. South Khan here from Khan Academy. For those of you who are wondering what this is, this is just something we started up several months ago, especially when we all have to become socially distant, as a way …
Senate filibusters and cloture
What we are going to do in this video is discuss the United States Senate. We’re gonna focus not only on areas where the Senate has special influence where the House of Representatives does not, but we’ll also focus on how the Senate actually conducts bus…
Big Tech is Destroying Ownership
Do you own the music that you listen to? If you collect vinyl records or just happen to still have CDs laying around, then you do. But the majority of us in 2023 rely on subscription services like Spotify or Apple Music to borrow the music we enjoy. What…
DeepSeek R1 Explained to your grandma
This new large language model has taken the tech world by absolute storm and represents a big breakthrough in the AI research community. Last Sunday, while TikTok was banned for 12 hours, an AI research team from China released a new large language model …