yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding decreasing interval given the function | Calculus | Khan Academy


3m read
·Nov 10, 2024

Let's say we have the function ( f(x) = x^6 - 3x^5 ).

My question to you is, using only what we know about derivatives, try to figure out over what interval or intervals this function is decreasing. Pause the video and try to figure that out.

All right, now let's do this together. We know that a function is decreasing when its derivative is negative.

Or another way to say it, it's going to be decreasing when ( f'(x) < 0 ).

So what is ( f'(x) )? Well, we could use the derivative rules and derivative properties. We know we apply the power rule to ( x^6 ), we bring the 6 out front, or multiply the one coefficient here times 6 to get ( 6x^5 ).

We decrement that exponent minus bring down the 5 times the -3 to get -15 ( x^{4} ). Now, we need to figure out over what intervals this is going to be less than 0.

Let's see how we can simplify this a little bit. Both of these terms are divisible by ( x^4 ) and they're both divisible by 3.

So let's factor out ( 3x^4 ). If you factor out ( 3x^4 ) here, you're left with ( 2x - 5 ).

So we have:

[
3x^4(2x - 5) < 0.
]

Any interval where this is true, we are going to be decreasing.

Now, how do we get this to be less than 0? Well, if I take the product of two things and it's less than 0, that means that they have to have different signs.

Either one's positive and the other is negative, or one's negative and the other is positive. So we have two situations: we could say either:

  1. ( 3x^4 > 0 ) and ( 2x - 5 < 0 ) (this is one situation).

Or,

  1. ( 3x^4 < 0 ) and ( 2x - 5 > 0 ) (and I'll do this one in a different color).

Actually, let me stay on the second case first. Are there any situations where ( 3x^4 ) can be less than 0?

You take any number, you take it to the 4th power, and even if it's negative, it's going to become positive. So you can't get a negative expression right over here.

So, actually, the second condition is impossible to obtain. You can't get any situation for any ( x ) where ( 3x^4 < 0 ).

So we can rule this one out. This is our best hope.

So under what conditions is ( 3x^4 > 0 )?

Well, if you divide both sides by 3, you get ( x^4 > 0 ). If you think about it, this is going to be true for any ( x ) value that is not equal to 0.

Even if you have a negative value there, if you have -1, you take it to the fourth power and it becomes a positive 1.

Only 0 will be equal to 0 when you take it to the fourth power. So one way you could say this is going to be true for any non-zero ( x ), or we could just say ( x \neq 0 ).

This is a little more straightforward. We add 5 to both sides, we get ( 2x < 5 ).

Dividing both sides by 2, you get ( x < \frac{5}{2} ).

So it might be tempting to say, all right, the intervals that matter are all the ( x )'s less than ( \frac{5}{2} ), but ( x ) cannot be equal to 0.

Now, is that the entire interval where our function is decreasing?

Let's think about what happens at 0 itself. We are decreasing over the interval from negative infinity all the way up to 0.

We're also decreasing from 0 to ( \frac{5}{2} ). So if we're decreasing right to the left of 0 and we're decreasing right to the right of 0, we're actually going to be decreasing at 0 as well.

So there's something interesting here. Even though the derivative at ( x = 0 ) is going to be equal to 0, we are still decreasing there.

The interval that we care about, the interval over which we're decreasing, is just ( x < \frac{5}{2} ).

We can see that by graphing the function. I graphed it on Desmos, and you can see here that the function is decreasing from negative infinity.

It's decreasing at a slower and slower rate. We get to 0, still decreasing to the left of 0, and then it continues to decrease to the right of 0.

So any value, any ( x ) value to the left of 0, the value of the function is going to be larger than ( f(0) ).

And ( x ) to the right of 0, the value of the function is going to be less than the function at 0.

It's actually decreasing through 0, even though the slope of the tangent line at 0 is 0.

Even though it's not negative, and then we keep decreasing. So we're decreasing for all values of ( x < \frac{5}{2} ), which you can see visually here.

More Articles

View All
Earth's place in the universe | Middle school Earth and space science | Khan Academy
Hello everyone! Today we are going to be talking about Earth’s place in space. So, for as long as there have been humans, we’ve been looking up at the stars and wondering about our place in the universe. Our understanding about this has improved over tim…
Worked example: Lewis diagram of the cyanide ion (CN⁻) | AP Chemistry | Khan Academy
In this video, we’re going to try to get more practice constructing Lewis diagrams, and we’re going to try to do that for a cyanide anion. So, this is interesting; this is the first time we’re constructing a Lewis diagram for an ion. So, pause this video …
Spooky Coincidences?
Hi, Vsauce. Michael here. You can practice speaking backwards, so when your words are reversed, they’re intelligible. But here’s something else that is weird. The digits in the speed of light are exactly the same as the latitude of the Great Pyramid of Gi…
Why 99% of Humanity Is Lost to Time
[Music] As the nukes dropped on every major city around the globe, everyone sought shelter, but there was nowhere to hide. In an instant, civilization as we knew it was destroyed. Every server, library, and entity that stored information about who we are,…
Representing systems of any number of equations with matrices | Precalculus | Khan Academy
In a previous video, we saw that if you have a system of three equations with three unknowns, like this, you can represent it as a matrix vector equation. Where this matrix, right over here, is a three by three matrix that is essentially a coefficient mat…
What Lies Beneath London’s Liverpool Rail Station? | National Geographic
[Music] People are surprised about what lies beneath London, especially when they find human remains. The Liverpool Street Station is one of the most important for archaeology because we’re right in the heart of the ancient city here. The cemetery was in …