yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform a 4D vector | Matrices | Precalculus | Khan Academy


4m read
·Nov 10, 2024

We've already thought a lot about two by two transformation matrices as being able to map any point in the coordinate plane to any other point or any two-dimensional vector to any other two-dimensional vector. What we're going to do in this video is generalize a bit and realize that the same principles can be used for n dimensional spaces.

Now, I know that sounds a little bit fancy, and it really is on some level, but it's really the same ideas. So, for example, let's extend what we know about two dimensions; let's extend it to say four dimensions. So let's write a four-dimensional vector here, and it is hard to visualize in four dimensions. So don't be hard on yourself if you have trouble. Two dimensions — not too hard; three dimensions — not too hard; four dimensions — a little bit hard for us, maybe we have to think about time as the fourth dimension.

But in matrix world or in vector world, it's pretty easy to represent them. As hard as it is to visualize, a four-dimensional vector will just have four numbers: negative one, let's see, negative three, I'm just making these up randomly, negative five, and one. This is a four-dimensional vector, and we could view it as being a weighted sum of the unit vectors in the different dimensions of four-dimensional space.

I guess you could say that this is the same thing as... actually, let me color code a little bit. This would be equal to negative 1 times the 1, 0, 0, 0 vector plus negative 3 times the 0, 1, 0, 0 vector plus negative 5 times the 0, 0, 1, 0 vector. I think you see where this is going.

And then last but not least, plus 1 times the 0, 0, 0, 1 vector. Now, when I write it this way, you might immediately start realizing, "Oh, I think I know how to do transformations here." For example, if I were to give you the transformation matrix, and this would be a transformation matrix for four dimensions. So it's going to be a four by four matrix.

So I'm going to write some random numbers here: 1, 0, negative 3, negative 1; 2, 0, negative 3, 1; 3, 2, 0, 2; 3, negative 1, 0, and 3. So my question to you is, what would be the mapping of this four-dimensional vector if we were to apply this transformation to four-dimensional space? What would be the result?

Pause this video and think about it. Well, it's completely analogous to what we did in the two by two world. In two-dimensional space, we thought about, "All right, instead of the 1, 0, 0, 0 vector, we're now going to use this vector. Instead of the 0, 1, 0, 0 vector, we're now going to use this vector." Instead of this one in that blue-green color, we're now going to use this one. And last but not least, instead of that, I guess we could say, salmon-colored vector, we're now going to be using this one.

So another way to think about it is this: the mapping of this vector. Let me write it this way; let me make a little line here so we can separate things a little bit. But we could write — I'll write it a little bit smaller; hopefully, you can see this. So this is our original vector: negative 5, 1. But we want to do the prime; what does it get mapped to under this transformation?

Well, this is going to be negative 1 instead of this unit vector right over here; it's going to be negative 1 of this one right over here. So it's negative 1 times all of this business: 1, 2, 3, and 3. And then, instead of plus negative 3, I could just write minus 3 times all of this business: 0, 0, to negative 1.

And then we have minus 5 times all of this business: negative 3, negative 3. And then we get 0, 0, and then — and that definitely gets a little bit more work involved the more dimensions we have — plus 1 times this business. So plus 1 times negative 1, 1, 2, 3.

And so what's this going to be equal to? So — and actually, this could be a good time to pause the video too and have a go at it. All right, so this is going to be this first one. I just make all of these negatives: negative 1, negative 2, negative 3, negative 3. And to that, I'm going to add — let's see, if I multiply all of those times negative 3, I'm going to get 0, 0, negative 6, and positive 3.

And then if I multiply all of these times negative 5, I am going to get 15, 15, 0, and 0. And then if I multiply all of these times 1, well, I just get those things again. So that's going to be negative 1, 1, 2, and 3. And we are in the home stretch! So now we can just add everything together, the corresponding terms.

And so this is going to be negative 1 plus 0 plus 15 plus negative 1. So that's going to be the same thing as 15 minus 2, which is going to be 13. The negative 2 plus 0 plus 15 plus 1, so that's going to be 16 minus 2.

Which is then we have negative 3 plus negative 6, which is negative 9. And then we add 2 to that, so that is negative 7. And then negative 3 plus 3 is 0, plus 0 is 0, plus 3 is 3. And we are done! We have found the mapping of this four-dimensional vector based on a four by four transformation matrix. Very cool!

More Articles

View All
All Trump Advices From The Apprentice For Success
I’ve always felt location is important, but the people behind the deal are much more important than a location. I’d much rather have a really smart, talented guy doing a deal in a not-so-good location than an idiot doing a deal in a great location because…
A "Hurricane" is Coming for the Real Estate Market - Billionaire Real Estate Investor
I like to say it’s a hurricane over real estate right now. We’re in the category 5 hurricane, and it’s sort of a blackout hovering over the entire industry until we get some relief or some understanding of what the Fed’s going to do over the longer term. …
Worked example: p-series | Series | AP Calculus BC | Khan Academy
So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th powe…
Khan Academy announces GPT-4 powered learning guide
Hi everyone, Sal Khan here from Khan Academy, and I’m very excited to let you all know about the work that Khan Academy is now doing in artificial intelligence. Obviously, over the last many months, there’s been a lot of talk about artificial intelligenc…
Multiplying complex numbers graphically example: -1-i | Precalculus | Khan Academy
We are told suppose we multiply a complex number z by negative one minus i. So, this is z right over here. Which point represents the product of z and negative one minus i? Pause this video and see if you can figure that out. All right, now let’s work th…
Why AI Is The Future Of Work
Throughout the history of humankind, there have been several technological disruptions that have changed the course of human evolution. From the invention of the wheel, the development of agriculture, the invention of the printing press, to the internet, …