yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Initial value & common ratio of exponential functions | High School Math | Khan Academy


4m read
·Nov 11, 2024

So let's think about a function. I'll just give an example: let's say h of n is equal to ( \frac{1}{14} \times 2^n ).

So first of all, you might notice something interesting here: we have the variable, the input into our function, it's in the exponent. A function like this is called an exponential function. So this is an exponential, exponential, exponential function. That's because the variable, the input into our function, is sitting in its definition of what is the output of that function going to be; the input is in the exponent.

I could write another exponential function. I could write F of, let's say, the input is the variable T, is equal to ( 5 \times 3^T ). Once again, this is an exponential function.

Now, there are a couple of interesting things to think about with an exponential function. In fact, we'll explore many, many, many of them, but I'll get a little used to the terminology.

So one thing that you might see is the notion of an initial value. Initial, initial value. This is essentially the value of the function when the input is zero. So in these cases, the initial value for the function H is going to be H of 0. When we evaluate that, that's going to be ( \frac{1}{4} \times 2^0 ). Well, ( 2^0 ) power is just 1, so it's equal to ( \frac{1}{4} ).

So the initial value, at least in this case, seemed to just be that number that sits out here. We have the initial value times some number to this exponent, and we'll come up with the name for this number as well. But let's see if this was true over here for f of T.

So if we look at its initial value, F of 0 is going to be ( 5 \times 3^0 ), and same thing again: ( 3^0 ) is just 1; ( 5 \times 1 ) is just 5. So the initial value is once again that.

If you have exponential functions of this form, it makes sense. Your initial value, well, if you put zero in for the exponent, then the number raised to the exponent is just going to be one, and you're going to be left with that thing that you're multiplying by. Hopefully, that makes sense, but since you're looking at it, hopefully it does make a little bit.

Now, you might be saying, well, what do we call this number? What do we call that number there or that number there? And that's called the common ratio. The common, common ratio.

In my brain, we say, well, why is it called a common ratio? Well, if you thought about integer inputs into this, especially sequential integer inputs into it, you would see a pattern.

For example, h of, let me do this in that green color, h of 0 is equal to, we already established, ( \frac{1}{4} ). Now, what is h of 1 going to be equal to? It's going to be ( \frac{1}{4} \times 2^1 ), so it's going to be ( \frac{1}{4} \times 2 ).

What is h of 2 going to be equal to? Well, it's going to be ( \frac{1}{4} \times 2^2 ), so it's going to be ( \frac{1}{4} \times 2 \times 2 ), or we could just view this as this is going to be ( 2 \times h ) of 1.

Actually, I should have done this when I wrote this one out, but we could write as ( 2 \times h ) of zero. So notice if we were to take the ratio between h of 2 and h of 1, it would be two. If we would take the ratio between h of 1 and h of 0, it would be two.

That is the common ratio between successive whole number inputs into our function. So h of, I could say h of ( n + 1 ) over h of n is going to be equal to, actually, I can work it out mathematically:

[
\frac{\frac{1}{4} \times 2^{n + 1}}{\frac{1}{4} \times 2^n}
]

That cancels: ( 2^{n + 1} ) divided by ( 2^n ) is just going to be equal to two. That is your common ratio.

So for the function H, for the function f, our common ratio is three.

If we were to go the other way around, if someone said, "Hey, I have some function whose initial value," so let's say I have some function, I'll do this in a new color. I have some function G, and we know that its initial, initial value is five.

If someone were to say its common ratio, its common ratio is six. What would this exponential function look like? And they're telling you this is an exponential function.

Well, G of, let's say x, is the input, is going to be equal to our initial value, which is five. That's not a negative sign there; our initial value is five.

I'll write equals to make that clear, and then times our common ratio to the ( x ) power. So once again, initial value right over there, that's the five, and then our common ratio is the six right over there.

So hopefully that gets you a little bit familiar with some of the parts of an exponential function and why they are called what they are called.

More Articles

View All
Catch of the Week - Something to Prove | Wicked Tuna
Airing it under control, the best time forward. Bump, bump, quick, good, neutral, great! Now it’s a tuna. Having this fish hooked up amongst the fleet is great. If we can land this fish, it would be the first one landed. It could be a good shot in the ar…
Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy
Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that’s the graph right over there: Y is equal to G prime …
Peter Lynch Talks About His Secret to Success in the Stock Market
When I was writing Magellan, one out of every 100 Americans was in the fund. Yeah, these are people that five thousand dollars and ten thousand dollars was a huge deal too. So when the market went down, you felt really badly. I mean, it’s really the press…
Estimating division that results in non whole numbers
So let’s think about something a little bit. What do you think 17 divided by 2 is going to be? Well, you might immediately realize that it’s not obvious what you need to multiply 2 by in order to get to 17. There’s no whole number that I could put here th…
The Science of Six Degrees of Separation
I have a friend named Sammy who, back in the early 2000s, wrote some code for his MySpace page. And what the code did was anybody who visited his page would have his picture and a tagline that said, “Sammy is my hero,” copied over to their homepage. And t…
Lecture 18 - Legal and Accounting Basics for Startups (Kirsty Nathoo, Carolynn Levy)
General C. Chrisy: “And Carollyn and I are going to talk about uh finance and legal mechanics for startups. Um this is certainly not the most exciting of the classes, sorry, but if you get this right, uh this is probably the class most… So thank you very …