yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
5 Money Lessons I Wish I Learnt Sooner
Hey guys! Welcome back to day three of the new money advent calendar. We’ve started off strong, three videos in a row. Um, I’m going to get real tested at like the 20th and the 21st of December, 22nd of December. Yeah, it’s going to be tough. I have a fee…
Worked example: Using the reaction quotient to predict a pressure change | Khan Academy
A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature? So, our carbon monoxide is react…
Tracing program execution | Intro to CS - Python | Khan Academy
Let’s trace a program step by step. This is a common pattern we’ll use to understand what the computer is doing under the hood when we press the Run button. Tracing program execution like this helps us better read and write programs because we can start t…
The single most important thing when conducting business!
I just believe in referrals, repeat customers. You know, in our industry, it’s so small. If you do one thing wrong, I mean, your reputation is trash. And I just think that from having a relationship with some of the clients that we do, and we have some ve…
LC natural response derivation 2
In the last video, we set up this differential equation that described an LC circuit, and now we’re going to go about solving this second-order circuit. The technique that works here is the same that worked with first-order ordinary differential equations…
Your Theme
Did you set a New Year’s Resolution for yourself? How’s that going? I don’t know when in the year you’re watching, but if I had to bet on the status of your resolution, it’s probably not flourishing, but failed or foregone. This is usually what the effort…