yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Curvature formula, part 2
In the last video, I started to talk about the formula for curvature. Just to remind everyone of where we are, you imagine that you have some kind of curve in, let’s say, two-dimensional space, just for the sake of being simple. Let’s say this curve is pa…
Inflection points (algebraic) | AP Calculus AB | Khan Academy
Let G of x = 1⁄4 x^4 - 4x^3 + 24x^2. For what values of x does the graph of G have an inflection point or have a point of inflection? So, let’s just remind ourselves what a point of inflection is. A point of inflection is where we change our concavity, o…
Dynamic equilibrium | Equilibrium | AP Chemistry | Khan Academy
To illustrate the concept of equilibrium, let’s say that we have a beaker and we put some water into our beaker. We also make sure that our beaker has a lid on it. Some of those water molecules are going to evaporate and turn into a gas, and eventually, o…
Newton's law of gravitation | Physics | Khan Academy
The mass of the Earth is about 6 * 10 ^ 24 kg. But you know what? I always wondered, how did we figure this out? How on Earth do you figure out the mass of a planet? Well, we did that by using Newton’s universal law of gravity, and in this video, we’re go…
Compare with multiplication examples
This here is a screenshot from this exercise on Khan Academy. It says the number 48 is six times as many as eight. Write this comparison as a multiplication equation. So pause this video and see if you can have a go at that. All right, so it sounds very …
How I saved enough money to invest in real estate
What’s up you guys, it’s Graham here. So, I just realized this is the first YouTube video ever that I’ve recorded while wearing a tie. What are we celebrating today? 60,000 subscribers! Thank you guys so much for all of your support, for watching anything…