yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
MONACO'S BILLIONAIRES SECRETS EXPOSED!
Narrator: A tiny country smaller than Central Park that holds more billionaires per square mile than anywhere else on Earth, but today we’re not just talking about any billionaires; we’re going deeper into a world so exclusive that even money alone can’t …
Estimating division that results in non whole numbers
So let’s think about something a little bit. What do you think 17 divided by 2 is going to be? Well, you might immediately realize that it’s not obvious what you need to multiply 2 by in order to get to 17. There’s no whole number that I could put here th…
Diana Hu on Augmented Reality and Building a Startup in a New Market
All right, Diana! Whoo! Welcome to the podcast. Thank you for having me here. Correct, so maybe we should start from now and then go backward in time. So, you’re working on AR at Niantic after your company, Escher Reality, has been acquired. How did you s…
Gordon Ramsay Harvests Glacial Ice Cubes | Gordon Ramsay: Uncharted
After a rough voyage, we’ve arrived at the end of the Tracy Arm Fjord to search for glacial ice. “Oh my God, it’s a jelly! Gorgeous, it’s beautiful!” So we’re looking for what size. “So what we want to look for is something that’s very rounded, right? U…
The Theme Park Duopoly That Can't Be Stopped
[Music] Theme parks, there’s nobody on earth that doesn’t like them. Take the family, ride some rides, buy some merch, eat some food, have some fun. But despite being a bit of a novelty experience you might have, you know, once or twice a decade, these th…
The REAL potential of generative AI
You’ve heard of large language models like Chat GPT, Chat GPT, Chat GPT, Chat GPT. They can answer questions, write stories, and even engage in conversation. But if you want to build a business that uses this technology, you’ll need to ask yourself an imp…