yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
What Exactly is the Present?
At the 1939 world’s fair in New York, the exciting new tech was the live television broadcast. Roosevelt became the first president to address the nation live on TV. But for years leading up to this event, engineers have been working on one particular tec…
Storytellers Summit Day 1 | National Geographic
Hello everyone. I’m here to tell you a story today. It was the Ramadan of 2017 in Johannesburg, a few months after I started working as a photographer. I pitched the story to an editor, saying I would like to photograph the taraweeh as a contemporary look…
What was the Articles of Confederation? | US Government and Civics | Khan Academy
So John, people are always talking about the Constitution, but the Constitution was not the first founding document of the United States. What were the Articles of Confederation, and why did they need to get replaced? Well, the Articles of Confederation w…
How Animals and Humans Clash and Coexist in Yellowstone | Nat Geo Live
For 20 years, my camera’s led me to some pretty extraordinary places. I could have never imagined that I would be standing on the streets of a place like Pyongyang, North Korea, and 20 years later, I came back to the United States with my cameras, and it’…
Mr. Freeman, part 40
Look closer, but don’t blink your eyes because you will lose your favorite 25th frame. There is it! Again I appear through the invisible door in the dim light of your consciousness. Let me invite you to the dance. Waltz, please. We are dividing and rolli…
15 Industries That Make Billionaires
Did you know that just a handful of industries are responsible for creating over 70 percent of the world’s billionaires? Yep, that’s right! And the reason why these industries are so profitable is because they share a few common things, and the insanely r…