yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
The Ponzi Factor: Proof by Definition
I talked with the author who has written a book so dangerous if this information becomes mainstream it alters the entire engine of our economy. Tong Lu has revealed just how our stock market is the dictionary definition of a Ponzi scheme. Here’s my conver…
15 Ways To Start A New, Better Life
While you’re busy thinking of a better life, your current and only life you have slowly passes you by. And while lifetimes are measured in decades, progress is measured in days. Welcome to Alux! Who knew that your physical health has positive effects thro…
This Is Not Yellow
Using GPS, these trails represent pizza delivery in Manhattan on a typical Friday night. And is this a frog or a horse? It’s episode 52 of IMG! This lemon looks yellow to me, and it probably looks yellow to you as well, but not in the same way. You see, …
Inside The Hard Tech Startups Turning Sci-Fi Into Reality
You actually can make some significant progress with like half a million dollars in 3 months. The best hardtech Founders do have very high clarity of vision around the future for hardtech companies. You have all this tactical risk; you don’t know if you’r…
Student tips for completing assignments on Khan Academy
Hi, I’m Shannon from Khan Academy, and I want to show you how to make the most of your learning time. First, make sure you’re logged into your Khan Academy account by checking for your name in the upper right-hand corner. If you are not logged in, you won…
Too HOT for Disney? ... and Mario Goes Crazy! IMG! #26
Famous things as Pac-Man ghosts and a hot Myspace photo dog toilet. It’s episode 26 of IMG. Giraffes can kiss, but when people kiss, a giraffe can be hidden. Dash Coleman made game over decorated with classic video game deaths. On a related note, Luigi i…