yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Wicked Laugh | Wicked Tuna
There’s your balloon ball! Get that! The wicked pissah team fell apart for a little bit, but now we’re running on all cylinders. We had a great week last week; we had a really good time. We caught two fish through at a time on the pizza. We made 16 grand;…
15 Things to Do After 7pm That Will Make You 1% Better
What does it mean to be 1% better? Exponential growth, compounding appreciation in your personal development, because every 1% builds on the previous one. And here’s what you need to keep in mind to achieve that: your day begins again at 7 p.m. We don’t …
Affirmative action | Civil liberties and civil rights | US government and civics | Khan Academy
What we’re going to do in this video is discuss affirmative action, and it can be a sensitive topic. So, I encourage folks to engage on the message boards, but to do so respectfully. So the first question is: what is affirmative action? Generally speakin…
Ancient City of Nan Madol | Lost Cities With Albert Lin
[dramatic music playing] MALE SPEAKER: This is it, Albert. Welcome to the jungle. We are on sacred grounds right now. You’re just beginning to see part of the structures. ALBERT LIN: I’ve never seen anything like this. MALE SPEAKER: Welcome to Nan Mado…
5 Ways to Forgive Someone Who Wronged You
Feelings of bitterness and revenge are like heavy stones we carry around on our backs. And if we’re unable or unwilling to throw these stones onto the ground and walk away from them, we’ll not only exhaust ourselves; the load also increases because of new…
How Wildlife Overcame South Georgia's Haunting Past — Ep. 5 | Wildlife: Resurrection Island
When this place was in full swing, a cloud of smoke covered the skies. 300 men toiled as thousands of whales lost their lives in Salieri. But who started this, and how did we get to the point of nearly exterminating the wildlife from this island? How is i…