yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Safari Live - Day 35 | National Geographic
Big pigs of youngsters that would explain the very excited behavior between them. Wonderful, right? Well, it’s not just the warthogs and myself and a man who that are joining you this afternoon. Jamie and Craig are in the other car, and they are heading u…
a productive day in the life vlog
Hi guys, it’s me, Ruri. So yeah, I just woke up. I head to the bathroom, I took a very cold shower, and now I’m doing my skincare routine. After doing my skincare, I’ll make myself some coffee and start studying. Peace. Oh, why does my hair look this weir…
Noble’s Story | How Khan Academy helped me get into my dream college
That was one of the best days of my life. Honestly, like signing day, I just knew that all the hard work that I put into this dream finally paid off. I’m Noble; I’m a freshman at Brown University. I’m a receiver on the football team. It became apparent t…
Photosynthesis | Energy and matter in biological systems | High school biology | Khan Academy
Hey everybody! Dr. Sammy here, your friendly neighborhood entomologist. Today, we’re going to talk about photosynthesis. There’s very little life on this planet that could exist without photosynthesis. It is the prerequisite for pretty much everything yo…
Cosine equation solution set in an interval
In a previous video, we established the entire solution set for the following equation. We saw that all the x’s that can satisfy this equation are a combination of these x’s and these x’s. Here, the reason why I’m referring to each of them is numerous x’s…
Warren Buffett: How the Average Person Can Become a Millionaire
So let’s not kid ourselves. The reason why we spend so much time learning about investing is to make money. Whether you’re saving up for a house or building wealth for retirement, we all have our own financial goals. In this video, Warren Buffett is going…