yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Charlie Munger & Warren Buffett: The Dangers of EBITDA
If somebody is, if they think you’re focusing on EBITDA, they may arrange things so that that number looks bigger than it really is. It’s bigger than it really is anyway. I mean, the implication of that number is that it has great meaning. You take teleco…
Converting a complex number from polar to rectangular form | Precalculus | Khan Academy
We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the ne…
NERD WARS: Catwoman Vs Samus?
Hey there! I got that pizza you ordered. Oh Jesus, it’s sexy! Nerd, it’s time for another Nerd Wars! Sexy Nerd Wars! This one to women. It’s going to be Samus Aaron versus Catwoman from Jax Kobe. Thanks, Jack Kobe! Thank you, Jack Kobe! I know there’s d…
These Tiny, Stunning Moths Are Only Found in One Place on Earth | National Geographic
A lot of people will think moth, and they’ll think dark gray fuzzy thing that they don’t want flying around their lights at night. These things don’t look like that at all, and in fact, most moths don’t. You say to anybody “microscopic moth,” they’re some…
Path of the Panther | Official Trailer | National Geographic
We called this area Shimmering Waters. [Music] This is our home, just like it’s the home to the deer, the frogs, and the panther. This is our home. [Music] This is the number one cause of death: vehicle collision is number one. In the last two weeks, we …
Existence theorems intro | Existence theorems | AP Calculus AB | Khan Academy
What we’re going to talk about in this video are three theorems that are sometimes collectively known as existence theorems. So the first that we’re going to talk about is the intermediate value theorem, and the common thread here, all of the existence t…