yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
You Won't Get Rich Renting Out Your Time
Next, you go into more specific details on how you can actually get rich and how you can’t get rich. The first point was about how you’re not going to get rich. You’re not going to get rich renting off your time. You must own equity, a piece of a business…
The Eighth Amendment | The National Constitution Center | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy. Today, I’m learning about the Eighth Amendment to the U.S. Constitution, which prohibits the government from imposing excessive fines and bail or inflicting cruel and unusual punishment on individuals accused or convicte…
These Divers Search For Slave Shipwrecks and Discover Their Ancestors | National Geographic
I am a light in the bottom of the ocean. [Music] Buried in the silence of years, I am the lights of the spirits. [Music] I often think of the middle passage as the origin story for Africans in the Americas during that transatlantic slave trade period. We …
3d curl formula, part 1
So I’ve spent a couple of videos laying down the foundation for what three-dimensional curl is trying to represent, and here I’m going to go ahead and talk about how you actually compute it. So, 3D curl is the kind of thing that you take with regards to …
Cave Diver vs. Tricky Maya Elves | Campfire Stories
I work in lots of sonatas in caves. The North day is basically a flooded cave, and I by myself, and I hear this lation. Whose it was there, and nobody answer? And then I heard a splash again, and I even have waves. I swear I have waves, the words: what’s …
Does Your Startup Need To Be In San Francisco?
We’re working together. We’re in the same room right now. Yes, we get to live in the same area, even though our personal decisions about where we live are wildly different. Yeah, very different lives. I don’t have a yard. I have kids too. [Music] All ri…