yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Identifying tenths on a number line | Math | 4th grade | Khan Academy
Where is the point on the number line? Well, here it is; here’s the point! But I’m guessing that they’re asking not literally just to find it and look at it, but what number is this point graphed at? Where is this on the number line? So, one thing we kno…
The Housing Market Is ABOUT TO BOTTOM
What’s up, Graham? It’s guys here. So, to give you some context, just over a year ago, people were buying up as much toilet paper as they could, emptying it from shelves and causing the price to skyrocket as high as $100 a roll. Well, as you would expect…
How To Save A LOT Of Money In College
What’s up, guys? It’s Graham here. So I took a look at my YouTube analytics the other day, and it turns out that a very large percentage of my audience, nearly 80%, is between the ages of 18 and 35 years old. I know from that a big part of the demographic…
My Real Estate Prediction for 2019...
What’s up you guys? It’s Graham here. So I hope you’re sitting down, because we’re gonna be having a very serious talk today about what’s happening in the real estate market; some of the things that you should be watching out for and what I think is gonna…
Medical Reason for Visions? | The Story of God
Ian Ball had never been a religious person. He never really thought about God. But scarring from brain surgery brought on a series of visions that made him question everything. “It’s carried on for about three or four weeks. About how often? Every day. E…
Drew Houston - CEO and Founder of Dropbox | Entrepreneurship | Khan Academy
So, uh, excited to have Drew Hon here. Uh, you know, a very well-known figure amongst kind of our team out here. Um, and for those who are maybe watching this video later, uh, founder of Dropbox. How many, how many billions of people do you have using? I …