yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
The Journey of Self Discovery: Uncovering Your True Identity
Every day you cross paths with countless strangers. People sit next to you on the bus; you’re a cashier at the grocery store, sends you a smile, and someone works out beside you at the gym. Often, these faces pass us by; there’s nothing particularly disti…
Memories Make Us Who We Are | Breakthrough
Steve believes our identities are built on memory. [Music] When you think about memory, it is the thing that threads and unifies our overall sense of being. So, without it, we become stuck in time, right? And we lose our [Music] identity. But how reliab…
Proportionality constant from table
[Instructor] We’re told the quantities x and y are proportional, and then they give us a table where they give us a bunch of x’s and they give us the corresponding y’s. When x is four, y is 10. When x is five, y is 12.5, and so on and so forth. Find th…
Underwater Cave Diving | Best Job Ever
When you tell people that you do tape tiling, they say, “Oh, you must be an adrenaline junkie!” But in fact, it’s the exact opposite. When I get underground and underwater, it’s a hundred percent focus, and all you hear is really the sound of your own bre…
Multiplying and dividing decimals by 10, 100, 1000
In this video, we’re gonna get a little bit of practice multiplying and dividing decimals by ten, hundred, and a thousand. So let’s just start with a little bit of a warm-up. If I were to say, “What is two point zero five times ten?” Pause this video and …
Introduction to pH | Biology foundations | High school biology | Khan Academy
What we’re going to do in this video is talk about acidity, and in particular we’re going to talk about the pH scale. Now the first question is: what does pH stand for? It turns out that there’s some debate why we have this lowercase p here. We know why …