yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
Proof: the derivative of ln(x) is 1/x | Advanced derivatives | AP Calculus AB | Khan Academy
What we’re going to do in this video is prove to ourselves that the derivative with respect to X of natural log of x is indeed equal to 1/x. So let’s get started. Just using the definition of a derivative, if I were to say the derivative with respect to …
Pompeii: New Studies Reveal Secrets From a Dead City | National Geographic
A there was in that moment, 79 AD was really, I can say, the place to be, but was really an important, important our little but important town. Inside the cast are the skeletons of these people. So these are just a human being of debt population living 2,…
Erin Frey on Therapy
Hi, I’m Ain. I’m the co-founder and CEO of Kip, a Y Combinator startup that helps you get amazing therapy. I started going to therapy when I realized that stress and anxiety were affecting my ability to do good work. I was waking up anxious every morning…
She Summited Each Continent’s Highest Mountain To Empower Women | Nat Geo Live
I work for the women in my country who are facing crazy mountains without even having to step on a mountain. And I thought of a campaign to go climb the highest mountain of every continent in the world, knowing that the struggle in the mountain was so par…
How to find a good deal / off market properties in Real Estate
What’s up, you guys? It’s Graham here. So one of the questions I get asked a lot is how do you find a good deal or how do you find something off-market in real estate. So I’m going to be sharing my thoughts about this. Now, I’ve been buying properties si…
Gustaf Alströmer - Growth for Startups
My name is Gustav. I’m gonna give a talk on growth for startups. This is gonna be for some of you guys, not super relevant right now because you might not have launched and thinking too much about growth when you’re having a launch isn’t that relevant. Bu…