yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
What Is The Scariest Thing?
[Michael breathing heavily] [laughing nervously] Everyone is scared of something. But is there something that everyone is scared of? What is the scariest thing possible? ♪ [Michael] So what is the scariest thing? - Is it thunder? - [thunder crackles] Shad…
The Science of Six Degrees of Separation
I have a friend named Sammy who, back in the early 2000s, wrote some code for his MySpace page. And what the code did was anybody who visited his page would have his picture and a tagline that said, “Sammy is my hero,” copied over to their homepage. And t…
The Banking Crisis Just Got Worse
US stocks have dropped sharply after new concerns over Germany’s Deutsche Bank. Investors continue to worry about the health of the global banking system. Banking is a nightmare; they can cause a lot of carnage when things go wrong. What’s up, guys? It’s…
Income elasticity of demand | APⓇ Microeconomics | Khan Academy
In previous videos, we have talked about the idea of price elasticity. It might have been price elasticity of demand or price elasticity of supply, but in both situations, we were talking about our percent change in quantity over our percent change in pri…
THE FED JUST BAILED | Major Changes Explained
What’s up, Graham? It’s guys here. So I’m not psychic, but what if I told you exactly what’s gonna happen throughout the markets in 2022? As in, I just give you the exact blueprint to every single adjustment being made that directly influences how people …
Verifying inverse functions by composition: not inverse | High School Math | Khan Academy
[Voiceover] Let’s say that f of x is equal to two x minus three, and g of x, g of x is equal to 1⁄2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of…