yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
How The World’s Richest Man Actually Has Very Little Cash...
As of October the 13th, 2021, the Forbes realtime list of billionaires has Elon Musk at number one with a personal net worth of $26.6 billion. If you want some context, that’s about the same as the gross domestic product of Greece. This means Musk’s fortu…
15 Life-Changing Decisions Self-Made Billionaires Had to Make to Be Successful
There are 2,640 billionaires in the world that we know of. About 65 to 70% built their fortune through their own efforts, and at each pivotal point in their lives, these people had to make a decision that would change their lives. The road is far from eas…
Simon Benjamin on Architectures for Quantum Computing
Simon, why in the past few years has quantum computing gotten so much attention? Right, well, quantum computing is something that academics have been working on now for decades, but what’s exciting is that it’s all starting to work in the sense that what…
How to Measure Happiness Around the World | National Geographic
Can you measure happiness? It’s not an easy task, but every year the Gallup World Poll tries to estimate how happy people are in a hundred and forty countries around the world. Where do they even start? Frequency of smiley face emojis? Number of hugs give…
Obligations of citizenship | Citizenship | High school civics | Khan Academy
In this video, we’re going to learn about the obligations of U.S. citizenship. Obligations are actions that citizens are required to fulfill, or they’ll face punishment by law. Unlike the responsibilities of citizenship we talked about in the last video, …
A day in my life in Japan vlog-Shopping/Getting a haircut
[Music] Okay, so good morning! It’s currently 4:35 AM, and I just woke up. You might think, “Why are you waking up this early?” The reason is, yesterday I was so tired, so I just went to bed pretty early, at 7:30 PM or something, so that I can wake up tod…