yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we've got this infinite series here, and let's see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we're going to multiply by -3 again.

So it looks like we have a common ratio of -3. We could actually rewrite this series as being equal to 0.5. I could say times -3 to the 0 power, -3 to the 0 power plus plus 0, or maybe I could just keep writing this way: - 0.5 * -3 to the 1 power, * -3 to the 1 power - 0.5, - 0.5 * -3 to the 2 power, -3 to the 2 power.

And we're just going to keep going like that. We could just say we're just going to keep having -0.5 * -3 to each or to higher and higher and higher powers, or we could write this in Sigma notation. This is equal to the same thing as the sum from, let's say, n equals 0 to Infinity.

It's going to keep going on and on forever. And it's going to be this first, it's going to be, you could kind of think the thing we're multiplying by 3 to some power. So it's going to be -0.5. Actually, let me just do that yellow color, so it's going to be 0.5 times -3. Negative? Let do that blue color, so times -3 to the nth power.

Here this is when n is zero, here is n is one, here is n is equal to two. So we've been able to rewrite this in different ways, but let's actually see if we can evaluate this.

So we have a common ratio of -3. Our R here is 3. The first thing that you should think about is, well, in order for this to converge, our common ratio, the magnitude of the common ratio, or the absolute value of the common ratio, needs to be less than one for convergence.

And what is the absolute value of -3? Well, the absolute value of -3 is equal to 3, which is definitely not less than one. So this thing will not converge. This thing will not converge.

Even if you look at this, it makes sense because the magnitudes of each of these terms are getting larger and larger and larger. We're flipping between adding and subtracting, but we're adding and subtracting larger and larger and larger and larger values.

Intuitively, when things converge, you're kind of, each successive term tends to get diminishingly small, or maybe it cancels out in some type of an interesting way. But because the absolute value of the common ratio is greater than or equal to one in this situation, this is not going to converge to a value.

More Articles

View All
The Trouble with the Electoral College
In a fair democracy, everyone’s vote should count equally, but the method that the United States uses to elect its president, called the electoral college, violates this principle by making sure that some people’s votes are more equal than others. The Ele…
Bad Investing Mistakes That Make Me Cringe...
Hey guys, welcome back to the channel! In this video, we’re going to be talking about three specific investing mistakes that, in all honesty, these ones like really make me cringe. Like, not gonna lie! And in all honesty, I see people make these mistakes …
Howard Marks: The BIGGEST Investment Opportunity in 40 Years
53 years in your investing career, there have been three sea changes, and we are in one of them. What does that mean? Howard Marks, he is a billionaire and one of the most highly respected investors in the world. Marks has been investing for over 50 years…
Elizabeth Warren: The Heart of the Two Income Trap
Most families saw and believed that if he’s at work and bringing in a certain amount of money and we can add my salary on top of things, that’s how it is; we can afford that house in the suburbs. That’s how it is that we can keep health insurance for her …
From $100 to $75 Million: Is Bitcoin a good investment?
What’s up you guys, it’s Graham here. So, if you’ve looked at the internet in the last few days, I’m sure you’ve seen an article out there that says if you had bought $100 of Bitcoin 7 years ago, you would have over $75 million today. Bitcoin is a topic t…
Illustrating the Beauty of a Disappearing World | Short Film Showcase
The big thing that I’m trying to do with my work is give a chance for people to connect with that landscape, to cultivate a deeper understanding, and hopefully inspire them to make a difference. I am—I just kind of disappeared into the color and the form …