yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Four Forces of Nature


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

The word “force” is used quite a bit these days. A government may threaten the use of force on another nation. A child might scream in protest at being “forced” to clean their room. But, even though we may not automatically think there’s any kind of scientific connection to our everyday use of the word, these real-life examples are very helpful in helping us understand the forces that are unseeable, but always at work.

According to its definition, force is defined as the push or pull upon an object resulting from its interaction with another object. While the forces at play in our world might not be as obvious as one nation retaliating against another when “pushed,” they are still essential for every single aspect of our lives. Without the four fundamental forces of nature, the universe as we know it could simply not exist. But what are these forces, and how are they responsible for everyday life?

Let’s begin with something that is probably already familiar to you: the force of gravity. Before gravity was completely understood, it was thought that planets and stars were purely a creation of a God or some unknown phenomenon, and their movements couldn’t fully be explained. It wasn’t until we got to Galileo that the world really began to question why objects move the way they do. Galileo was the first person to observe that objects thrown from the same height seemed to pick up speed at a constant rate. He also correctly observed that all bodies fall with the same acceleration, as long as air resistance and buoyancy aren’t a factor.

While he was on the right track, it wasn’t until a few decades after Galileo’s death that the theory of gravity was officially presented by Isaac Newton. As the story goes, just a single apple changed the course of science forever… maybe. Newton correctly concluded that gravity was a force that existed between all objects with mass. It pulls objects towards each other, and the more massive the object, the greater the pull. That’s exactly why when we jump into the air, we don’t just leave the planet - the earth is huge, its gravitational pull is too strong for us, keeping us all squarely on the ground.

This is good because… well we aren’t flying away, but when it comes to us actually wanting to leave the planet, well it just sucks, literally. Gravity is the one thing holding us back from easily accessing space. If gravity was just a bit more forgiving, well, we might already be living on the Moon or Mars. Except, we really wouldn’t. We need gravity. Gravity is what keeps the planets orbiting the sun, our moon in orbit around us, but it isn’t exactly what’s holding our galaxy together. There, we venture to dark matter and dark energy. Those are separate videos.

But just note, without gravity, the planets would have wandered off long ago, the sun wouldn’t have heated the earth, and none of us would be living to watch this video. Gravity is still an important area of study today, and more discoveries have been made since Newton. Most notably, Einstein’s discovery that the force of gravity works not only on mass, but on light as well. Of course, this isn’t visible to the naked eye, but it is measurable, and this discovery added valuable knowledge to our understanding of gravity and how it works. General and special relativity… well, we’ll talk about those another time.

But as important as it is, gravity really isn’t that strong. Next to gravity, something called the “weak force” might not sound so impressive, but it’s a force that is even more powerful than gravity, albeit only at very short distances; to be more precise, at the distance of about 0.1 percent of the diameter of a proton. While this distance is obviously not perceptible to humans, it more than does the job. The weak force is an interaction that happens exclusively between subatomic particles. When the weak force is at play, they can exchange three different force carriers, known as bosons. These are essentially tiny little bundles ...

More Articles

View All
Economies and diseconomies of scale | APⓇ Microeconomics | Khan Academy
In the last video, we were able to construct here in red this long run average total cost curve based on connecting the minimum points or the bottoms of the u’s of our various short run average total cost curves. Each of those short run average total cost…
My Response To Michael Reeves | The Full Story
I don’t have credit. Don’t have a credit card. I don’t actually know what rent is here. [Music] [Applause] So today I want to introduce you to Michael Reeves. He’s a millennial college dropout turned computer programmer turned robotic mad scientist tur…
Linear equation word problems
When Quinn returned from vacation, he turned the heat back on in his home. He set the temperature as high as it could go. Q represents the temperature in Quinn’s home in degrees Celsius after T minutes. They say Q is equal to 15 plus 0.4T. What was the t…
The Deutsch Files III
On exactly that, the fact that the more that we summarize what I think is an exceedingly clear body of work in the fabric of reality in the beginning of infinity, when nonetheless you explain it to people as POA says, you know it’s impossible to speak in …
The Paradox of an Infinite Universe
Is the universe infinite? Does it have an edge? And if so, what would you see if you went there? Today we know that the universe had a beginning 14 billion years ago and that it’s been expanding ever since. But something that’s expanding should also have…
Extracting Water on Mars | MARS: How to Survive on Mars
Water is the essential ingredient to life as we know it. Everywhere we look, water is where life is. So, that’s why the mantra for Mars exploration has been thus far: follow the water. We know some of the places where water happens to be because that’s cr…