yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ethical dilemma: Should we get rid of mosquitoes? - Talya Hackett


4m read
·Nov 8, 2024

Because of the pathogens they carry, mosquitoes are responsible for more human deaths every year than any other animal, including other humans. But very few of the 3,500 mosquito species actually transmit deadly diseases to humans. So, what if we could get rid of the most lethal mosquitoes? Over the last two decades, scientists have begun conducting experiments using engineered technologies called “gene drives” that could theoretically do just that. So, should we?

To begin grappling with this question, we have to get a sense of how the technology works. In the usual process of inheritance, the genomes of each parent recombine randomly. So their offspring end up with the DNA that’s a rough 50/50 mix from their parents. But gene drives thwart this process and ensure they're passed on. Gene drives are found in nature, but, using new gene-editing technology, scientists have also begun engineering them in contained labs.

For example, in a 2018 study, researchers injected a gene drive into mosquito eggs that made females sterile when they had two copies of the modified gene. Such a modification would usually disappear quickly. But it spread. The modified mosquitoes passed the gene drive onto some of their offspring. The gene drive, which they inherited on one chromosome, copied itself onto the other chromosome in the offspring’s sperm and egg cells, ensuring it was passed on to their offspring, regardless of which chromosome they received.

This process repeated as all males that carried the gene and all females that had one copy of it, continued reproducing, spreading the gene drive. As they did, they produced more females that had two copies of the gene—and would therefore be sterile. With a near 100% inheritance rate, the gene spread through the population and within 12 generations almost all females were sterile, and the populations crashed.

In 2020, the same team achieved a similar result with a gene drive that made populations male-only. Gene drives have proven powerful in the lab. So, implementing them in the wild is a big decision—one that’s being considered because of how the fight against mosquito-borne diseases is going. Existing mosquito control measures, like insecticide-treated bed nets, helped reduce the number of deaths from malaria, the deadliest mosquito-borne disease, between 2000 and 2019. But fatalities have begun rising again. Many mosquitoes have developed insecticide resistance—and insecticides kill more than just mosquitoes.

In addition to the first-ever malaria vaccine, approved in October of 2021, many see promise in gene drives. Experts are researching what it would look like to specifically target the deadliest mosquito populations with this technology. Like Anopheles gambiae, for instance: the species overwhelmingly responsible for spreading malaria in Equatorial Africa, which experiences the vast majority of mosquito-related fatalities.

The idea is that, when a gene-drive-affected population of Anopheles gambiae drops low enough, it would break the malaria transmission cycle. But before gene drive mosquitoes are actually released into the wild, some big questions need answers. Like, could gene drives cross into and cause the collapse of non-target species? It doesn’t seem that many mosquito species interbreed, making this unlikely, but scientists are conducting research to be certain.

And how might a mosquito population’s collapse affect ecosystems? One team is examining the feces and stomach contents of insectivores in Ghana to gauge the role of Anopheles gambiae in local food webs. And researchers are investigating whether suppressing populations could make other insects more vulnerable or leave a niche open that a harmful species could occupy. Scientists are also exploring alternatives to population collapse, like gene drives that instead make mosquitoes resistant to the malaria parasite. And others are developing countermeasures to reverse the effects of gene drives if needed.

Meanwhile, some people have called for gene drive research to halt out of concern for the possible consequences. This raises another question: who should decide whether to release gene drives? It’s essential that communities, scientists, regulators, and governments of the countries most affected by mosquito-borne diseases be highly involved in the research and decision-making processes. Conversations are currently underway at all levels to establish a system to manage this new area of research—and the ethical questions it carries.

More Articles

View All
Could Tweaking Our Memories Help Us Feel Better? | Nat Geo Live
The work that I’ve been doing at MIT focuses on finding individual memories in the brain and then trying to actually tinker with those memories. Can we turn them on? Can we turn them off? Can we change the contents of those memories? Ethical stuff aside, …
Epic Mountain Climb Proves “Exploration Is Not Dead” | Exposure
This was old school, real turn of the century Adventure. It was everything that exploration and Adventure is and can be, and those elements that we’ve lost along the way. We wanted an anti-Everest, and we really got an anti-Everest. I mean, Mar, the north…
The 5 BEST Credit Cards for Beginners
What’s up, you guys? It’s Graham here. So, I just want to mention really quick that I still get emails and comments about the video I posted the other week about burning all of my credit cards with a not a flamethrower. For anyone that didn’t fully under…
The 5 BEST Credit Cards For Cash Back
What’s of you guys? It’s Graham here. So, after the recent popularity of the Apple credit card video, it came to my attention that a lot of people were focusing on the 2% cashback on the products purchased through Apple Pay and then also focusing on the …
SPACE CATS !!! - Smarter Every Day 85
Hey, it’s me D. Welcome back to Smarter Every Day! So, a couple of weeks ago, I asked a question here on Smarter Every Day in hopes that it would be beamed up to the space station so the astronauts could answer. Well, that happened! Why don’t we take the …
1,074 MPH BASEBALL vs. 1 Gallon of Mayonnaise - Smarter Every Day 264
foreign [Music] This is a supersonic baseball cannon. We built it because it’s awesome and it can make baseballs go supersonic. What have we done? Look at it! We initially just wanted to see if we could make a baseball go past the speed of sound, and we…