yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Zeros of polynomials (with factoring): common factor | Polynomial graphs | Algebra 2 | Khan Academy
So we’re given a p of x; it’s a third degree polynomial, and they say plot all the zeros or the x-intercepts of the polynomial in the interactive graph. The reason why they say interactive graph, this is a screenshot from the exercise on Khan Academy, whe…
Kalani Queypo: Playing Squanto | Saints & Strangers
Squanto is actually a real figure in American history. Quanto is from the Pawtuxet tribe, and Squanto actually is a way for like a decade. He’s enslaved, he’s captured by Europeans, and he learns the English language. A decade later, he comes back, finds …
Safari Live - Day 234 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. This is why the inclement ride is such a firm favorite. If King Quito… [Music] it just looks ready for a fight. This is sti…
Destination Delicious: Experiencing Austin with an Appetite for Adventure | National Geographic
Foreign photography leads you to magic places that you wouldn’t go without the camera. [Music] Curiosity is sort of like the fundamental thing that, as a documentary photographer, you have to have. That’s why I became a photographer. I work a lot in the A…
Bitcoin For The Intelligent Layperson. Part One: Context.
[Music] In 2008, an anonymous person going by the name Satoshi Nakamoto wrote a paper describing a protocol for a digital currency called Bitcoin. Bitcoin brought together ideas discussed on the cipherpunk mailing list during the 1990s. The cipherpunks st…
Building a Marsbase is a Horrible Idea: Let’s do it!
From hostile deserts, to lonely islands and the highest mountains, wherever there is space to expand into, humans do so. So, it’s hardly surprising that we’re already making preparations to set foot on Mars and to create the first permanent colony outside…