yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Q&A with Destin - Smarter Every Day 148
Hey, it’s me Destin. Welcome back to Smarter Every Day. I get a lot of questions because of Smarter Every Day. Some that are personal, some that are about the channel, all different kinds of things, and I’ve never really addressed them in a formal way. So…
The Excavation of Tutankhamun’s Mummy | King Tut in Color
NARRATOR: At last, in October 19, 2005, after three years of excavating Tutankhamun’s tomb, Howard Carter and his team begin to open the king’s coffin. Lifting its lid exposes another shroud. When Carter carefully peels that back, he discovers a second gi…
Khan for Educators: Student experience
Hi, I’m Megan from Khan Academy, and in this video, we’re going to walk you through the learner or student experience at Khan Academy. We believe that everyone is a learner; from the teacher perspective, all of your students are learners, and you can be a…
15 Wealth Killing Mistakes Parents Make
Why hello there my friend. Now, I hate to break this to you, but many of you are in a toxic relationship with money. If you’re not careful, you’re going to pass on that toxicity to your children. Your actions are teaching them how to behave with money, an…
Comparing with z-scores | Modeling data distributions | AP Statistics | Khan Academy
Before applying to law school in the U.S., students need to take an exam called the LSAT. Before applying to medical school, students need to take an exam called the MCAT. Here are some summary statistics for each exam. For the LSAT, the mean score is 15…
Example finding appropriate units
Louisa runs a lawn mowing business. She decides to measure the rate at which the volume of fuel she uses increases with the area of the lawn. What would be an appropriate unit for Louisa’s purpose? So let me reread this to make sure I understand it. She …