yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
TROLL LIPS and more! IMG! #51
Violin skulls and the most popular social networks by country. It’s episode 51 of IMG! Our Sun is big, like really, really big. Take a look at this photo of the transit of Venus. Brady Haran pointed this out to me. Venus is pretty big. Almost the size of …
The Odds of Existence
In life, anything is possible because we can never fully understand how the world works. The laws of physics prevent us from being able to tell the future. Everything we predict is a probability; some are a lot more probable, others are less probable, whi…
This is why I'll NEVER flip houses...
Lots of you guys, it’s Graham here. So, as many of you know, I’ve been working full-time in real estate since 2008 as a real estate agent, which means I’m kind of getting old now. Now, if you’re doing that, I’ve helped my own clients flip properties for a…
Underwater Lost City in England | Lost Cities With Albert Lin
ALBERT LIN (VOICEOVER): Maritime archaeologist Garry Momber has been exploring these waters for 20 years. Thank you. ALBERT LIN (VOICEOVER): The English Channel is a notoriously difficult place to dive. Meticulous preparations are vital. Visibility isn’t…
Predator prey cycle | Ecology | Khan Academy
What I want to do in this video is think about how different populations that share the same ecosystem can interact with each other and actually provide a feedback loop on each other. There are many cases of this, but the most cited general example is the…
Stuffed GIRL'S HEAD? -- Mind Blow #14
A water-powered jetpack and step right up! Get just stuff, girl! Heads Vsauce! Kevin here. This is my flow. This super Jen and Tory blew everyone away in 2000, made by combining an Atari 2600, Genesis, NES, and Super NES into one sexy package. But let’s …