yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
The Crux Episode 1 | Full Episode | National Geographic
Traditionally, climbers are seen as very friendly, lovely people. I love the climbing community, and it’s just so beautiful. Everyone in the competitions really feels like close friends to me; I love the atmosphere. I love the camaraderie. I love my teamm…
Peasant Revolts | World History | Khan Academy
In this video, I want to look at popular uprisings in late medieval Europe. So we’re talking about between roughly the 14th and the 16th centuries. These are sometimes known as peasants’ revolts, and we’ll talk a little later about whether or not that’s a…
How to Mountain Bike Like a Pro | Get Out: A Guide to Adventure
Hi, I’m Eric Porter. I’m a professional mountain biker, and I’m going to teach you how to get started with mountain biking. I love mountain biking ‘cause it’s a great way to get away from everything, get out into the woods, ride your bike, challenge your…
DESTROYING all my credit cards with a FLAMETHROWER
What’s up you guys? It’s Graham here. So after reading all of the comments on the unboxing video of the JP Morgan Reserve credit card, I came to the realization that credit cards are evil. So I’m gonna be destroying all of my credit cards today and seeing…
Breaking apart 3-digit addition problems | 2nd grade | Khan Academy
Mike isn’t sure how to add 189 + 608, help Mike by choosing an addition problem that is the same as 189 + 608. Now let’s look at these choices. Let’s just start with this first choice. Actually, all of these choices start with having 1 hundred; they all…
Jessica Livingston - What's Different about "Unicorns"
Hi everyone! I can’t see you, but I’m so excited to see you. Um, this is actually my first time back in the Bay Area in more than a year. Um, I’ve been living in England for the past year with my family, and I just could not miss this day. So here I am, b…