yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Walking in Miep's Footsteps | A Small Light | National Geographic
[Music] Meat Piece was Otto Frank’s secretary, and she was a very close friend of the Frank family. They actually met in 1933. She was the first person he asked when he decided they needed to go and hide in the annex, and she immediately said yes. I knew…
Common and proper nouns | The parts of speech | Grammar | Khan Academy
Hello, Garans! I’d like to bring up the idea of the difference between a common and a proper noun. The difference between a common and a proper noun is simply the difference between something with a name and a more generic version of that thing. I’ll giv…
Monopsony employers and minimum wages
In this video, we’re going to review what we’ve already learned about monopsony employers that we’ve covered in a previous video. But then we’re going to add a twist of adding a minimum wage and see what happens. And it’s actually interesting; it’s actual…
How do you know if you should be a business owner?
How do you know if you should be a business owner? I think one of the critical things is to know if you’re a business owner or an entrepreneur. There’s two different questions here. You can be a business owner and have an entrepreneur as a partner or some…
EXCLUSIVE: "Glowing" Sea Turtle Discovered | National Geographic
Wait, what did you find? We found a biofluorescent turtle! The scientists have only really tuned in to biofluorescence in the last 10 years, and as soon as we started tuning into it, we started to find it everywhere. First, it was in corals and jellyfish…
how I got rid of my ACNE after 8 years - ONLY thing worked
If drinking more water, exercising more, sleeping more, reducing stress, or generally the tips that people give you on YouTube didn’t work for you then this video is for you. Hi, guys, it’s me Ruri. Today, I’m back with another very requested video. Just …