yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Why I Stopped Spending Money
What’s up guys? It’s Graham here. So, I think it’s no surprise that for anyone to see my channel for a while, I’m pretty frugal. To be honest, even calling it that could be generous. I’m, uh, extremely thrifty, or maybe we could just call it fiscally cons…
Flash Actionscript Tutorial 2 - If Statements
Hey guys, this is Maaz1. Today I’m going to be doing a flash action script tutorial number two. It’s a follow-up of tutorial number one. So I’m going to be teaching you how to make a button to toggle playing and pausing for an animation. This is going to…
How to Transform Yourself in Solitude | Useful Ways to Spend Time Alone
The Zhongnan mountains - located in the Shaanxi Province in China - have been a dwelling place for Taoist hermits for at least more than two thousand years. For centuries, they’ve been seeking refuge from society, and for different reasons. Some pursued a…
In the 19th Century, Going to the Doctor Could Kill You | Nat Geo Explores
[Music] They deliver babies. They help you when you’re sick. They are the ones who examine all the things doctors keep her health in check. They spend years of training to do it. But that wasn’t always the case. [Music] Medicine for most of the 19th cent…
Difference between wealth and income | Macroeconomics | Khan Academy
Before talking more about inequality, I think it’s worth talking about the difference between wealth and income. Wealth and income often get confused in conversations about inequality. As you can imagine, these two things move together. You tend to associ…
How to Brute Force your way to $1 Million
Let’s get something out of the way: one million dollars isn’t what it used to be. Yes, it won’t be enough to live a lavish lifestyle for the rest of your life, but it would definitely make your life exponentially better than it is right now. Here’s someth…