yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Free Will is Incoherent
In this video, I’ll explain why libertarian free will is, at best, meaningless and, at worst, incoherent. By the way, if your worldview depends on its existence, your boat is leaking badly. According to a naturalistic worldview, here’s a rough sketch of …
Earth's fossil record | Evolution | Middle school biology | Khan Academy
[Instructor] Life on Earth has existed for billions of years. Humans know this, not because we’ve been around the whole time, but instead, thanks to the discovery of fossils, which tell us about organisms that lived in the distant past. Scientists have fo…
EPIC LEAPS.
Hey, Vsauce Michael here, and today, in honor of Leap Day, I would like to talk about leaps. What’s the largest leap a living thing could possibly take? And how does the fact that life can leap possibly give us evidence that you, me, and all of us are act…
Spanish colonization | Period 1: 1491-1607 | AP US History | Khan Academy
[Instructor] Imagine that one day you are standing in your backyard when all of a sudden you saw an alien ship land, and the alien ship had incredible technology. You saw aliens walking out of the ship, bearing strange animals, maybe scary looking weapons…
How I leased this home for $22,500 per month
What’s up you guys? Scram here. So you may remember this house from the video I made about why college could be a total waste of time, and I’m here back again because I just ended up leasing it for twenty-two thousand five hundred dollars per month. So t…
Lateral & total surface area of rectangular prisms | Grade 8 (TX) | Khan Academy
We’re asked what is the lateral surface area of the rectangular prism and then what is the total surface area of the rectangular prism. Pause this video, have a go at this before we do this together. All right, now let’s first focus on lateral surface ar…