yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Let It Go, Ride the Wind | The Taoist Philosophy of Lieh Tzu
The ancient Taoist text Zhuangzi describes Lieh Tzu as the sage who rode the wind with an admirable indifference to external things. Thus, in his lightness, he was free from all desires to pursue the things that supposedly make us happy. Lieh Yokuo, also …
Using right triangle ratios to approximate angle measure | High school geometry | Khan Academy
We’re told here are the approximate ratios for angle measures: 25 degrees, 35 degrees, and 45 degrees. So, what they’re saying here is if you were to take the adjacent leg length over the hypotenuse leg length for a 25-degree angle, it would be a ratio o…
The Rarest & Most Expensive Watches On Earth - Patek, F.P. Journe, Audemars Piguet, & MORE
[Music] Well, well, well, everybody, Mr. Wonderful here in a very special magical place. If you’re talking watches, with two great watch friends—first of all, Paul Boutros, the legendary auctioneer for very high-end watches. The Phillips auction is legend…
Bill Belichick & Ray Dalio on Picking People: Part 2
In our conversations, one of the things that I liked about what you did, and um, which is what I do, is you get very clear on the specs. You know that people are different, and you make very clear distinctions of what somebody is like, you know. We try to…
Trapped in the icy waters of the Northwest Passage | Podcast | Overheard at National Geographic
Foreign, so look, I know we’re going to get into the whole journey, but let’s start with tell me about the moment on this journey when you felt the most scared. Okay, that’s a good one. [Laughter] Um, this is Mark Senate. He’s a long-time National Geogra…
#shorts
Here’s a day in the life of a private jet broker. I arrived at the office at 7:00 a.m. to respond to some important emails from Hong Kong and Dubai, ensuring they were received within their working hours. Being on time builds trust and keeps things runni…