yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Influential points in regression | AP Statistics | Khan Academy
I’m pretty sure I just tore my calf muscle this morning while sprinting with my son. But the math must not stop, so I’m here to help us think about what we could call influential points when we’re thinking about regressions. To help us here, I have this …
Irregular plural nouns | foreign plurals | The parts of speech | Grammar | Khan Academy
Hello Garans. Today we’re talking about another kind of irregular plural noun, and that is the foreign plural. Those are words that are borrowed into English from some other language, words like fungus, or cactus, or thesis, or criteria. These words come …
Wave transmission | Waves | Middle school physics | Khan Academy
When we’re talking about waves, transmission is when a wave passes from a material into another one. For example, here we have the sun, 93 million miles away on average, and imagine the different materials that the light has to travel through from the sun…
Why Don't We Shoot Nuclear Waste Into Space?
Here in the Kotart Labs, we test very important ideas to see what happens when you blow things up or play with black holes. Many of you suggested that we look into an idea that sounds reasonable: shooting nuclear waste into space. It’s one of those concep…
Best Film on Newton's Third Law. Ever.
There are a lot of misconceptions out there, and this is a video about one of the most common ones. So I went around asking people, “What makes the Moon go around the Earth?” and they told me, “The Earth puts a gravitational force on the moon.” But does …
Another average velocity and speed example
We are told a seal and a penguin are playing a fun game of catch. The penguin swims leftward nine meters, then dodges rightwards another 12 meters. The penguin swims a total time of eight seconds, so goes to the left for 9 meters and then it goes to the r…