yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Bitcoin Just Ended Investing | The NEW 60/40 Rule
What’s up, ding dongs? It’s Poinky Doink here! There you go, I said it! But anyway, I never thought I would be making a video on this topic today. But research has just come out that claims the traditional way investors grow their wealth, build their mon…
Why Invisibility is Power | Priceless Benefits of Being Invisible
In today’s society, an individual’s success seems increasingly synonymous with ‘relevance.’ How much attention do you draw to yourself? How much are people talking about you on social media? How much exposure do you have on Twitter? How many followers on …
Interpreting general multiplication rule | Probability & combinatorics
We’re told that two contestants are finalists in a cooking competition. For the final round, each of them spins a wheel to determine what star ingredient must be in their dish. I guess the primary ingredient could be charred spinach, romaine lettuce, cabb…
MY FIRST JOB l #shorts
I was in high school, and I took a job in an ice cream parlor. I did it because the girl I was really interested in, in my grade 11 class, was working at the shoe store across from this ice cream parlor. I got hired as an ice cream scooper, so I’d sample …
WARNING: The Next Great Reset - UNEMPLOYMENT
Facebook parent Meta Platforms is planning another round of layoffs. 7,000 positions will be eliminated. The Fed is not happy to see the unemployment rate at 3.4%. Fed officials came out and said, “We’re not done yet.” What’s up, guys? It’s Graham here. …
Refugees Welcomed in New York | Explorer
[music playing] HOST: Of approximately 61,000 residents in Utica, New York, nearly 11,000 are immigrants and refugees. And 450 or more arrive here each year. Utica was a manufacturing town in the 1970s and 1980s. Some of our factories began to leave, and…