yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
The Genius of Cycloidal Propellers: Future of Flight?
The first cycloidal propellers were thought up in the early 20th century, but now the same principles are being repurposed for modern vertical takeoff and Landing Vehicles. Later we’ll be checking out the company’s cycl Tech, who are doing just that, and …
The WALKING WATER Mystery (in SPACE and SLOW MOTION!) - Smarter Every Day 160
Hey, it’s me Destin and welcome back to Smarter Every Day! I have a problem. There is a specific water phenomenon that I see happening all around me, but I have no idea how it works. I’ve been trying to figure it out for years. In fact, I put a video on t…
Society and religion in the New England colonies | AP US History | Khan Academy
Depending on where you grow up in the United States, you might hear a different story about the founding of this country. Now, I grew up in Pennsylvania, and the story that I heard was about the Pilgrims landing at Plymouth Rock. They were a group of deep…
How Do Billion Dollar Startups Start?
Every founder looks at Airbnb and just imagines Airbnb in the early days must have been something special. Actually, they kind of all look the same. For founders just starting out, they think that the trajectory and the growth graph of all the successful …
Galvanic (voltaic) cells | Applications of thermodynamics | AP Chemistry | Khan Academy
Galvanic cells, which are also called voltaic cells, use a thermodynamically favorable reaction to generate an electric current. Before we look at a diagram of a galvanic or voltaic cell, let’s first look at the half reactions that are going to be used in…
Ask Sal Anything! Daily Homeroom Live: Monday, April, 27
Hi everyone! I’m Dan to you from Khan Academy. Unfortunately, after about a month and a half, Sal’s unable to join us today. But you do have myself and another kind of me team member, Megin Pattani, who’s here to kind of hold down the fort while Sal’s awa…