yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
How to Invest in the 2020 Stock Market Bubble...
Hey guys, welcome back to the channel! In this video, we’re going to be talking about how we as investors should be approaching the topic of investing right now. Man, 2020 has been a whirlwind year, not just in general but also in the stock market. Someho…
The Seven Years' War part 1
When we’re talking about major wars in colonial North America, we tend to think about the American Revolution, not its earlier iteration, the Seven Years War. I think that’s a shame because the Seven Years War was incredibly influential, not only on the A…
Michelle Carter gives tips for keeping children active & healthy during Covid-19 | Homeroom with Sal
Hello, welcome to the daily homeroom. Sal Khan here from Khan Academy. For those of you, for those of you, uh, that this is the first time you’re joining, this is something that we’re doing on a daily basis so that we all feel connected in this time of sc…
Jeff Dean’s Lecture for YC AI
So I’m going to tell you a very not super deep into any one topic but very broad brush sense of the kinds of things we’ve been using deep learning for the kinds of systems we’ve built around making deep learning faster. This is joint work with many, many,…
Stratospheric Ozone Depletion| Global change| AP Environmental Science| Khan Academy
In this video, we’re going to talk about a molecule known as ozone. Ozone you can also view as O3 or three oxygens bonded this way. These dashed lines show that sometimes the double bond is on this side, sometimes it’s on that side. You might recognize th…
Volcanoes 101 | National Geographic
Portals into the heart of the Earth, they burn bottomless cauldrons fueled by an ancient rat, bubbling and boiling thousands of miles beneath the surface and just waiting to burst through. Volcanoes are scattered across the globe; volcanoes can be found a…