yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a differential equation | Differential equations | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Particle moves along a straight line. Its speed is inversely proportional to the square of the distance s it has traveled. Which equation describes this relationship?

So I'm not going to even look at these choices and I'm just going to try to parse this sentence up here and see if we can come up with an equation.

They tell us its speed is inversely proportional to what? To the square of the distance s it has traveled. So s is equal to distance. S is equal to distance. And how would we denote speed then if s is distance? Well, speed is the rate of change of distance with respect to time.

So our speed would be the rate of distance with respect to time, the rate of change of distance with respect to time. So this is going to be our speed.

Now that we got our notation, the S is the distance, the derivative of s with respect to time is speed. We can say the speed, which is D capital S DT, is inversely proportional.

So it's inversely proportional. I WR a proportionality constant over what? It's inversely proportional to what? To the square of the distance, to the square of the distance it has traveled.

So there you go. This is an equation that I think is describing a differential equation really that's describing what we have up here. Now, let's see which of these choices match that.

Well, actually this one is exactly what we wrote. The speed, the rate of change of distance with respect to time, is inversely proportional to the square of the distance.

Now just to make sure we understand these other ones, let's just interpret them. This is saying that the distance, which is a function of time, is inversely proportional to the time squared. That's not what they told us.

This is saying that the distance is inversely proportional to the distance squared. That one is especially strange.

And this is saying that the distance with respect to time, the change in distance with respect to time, the derivative of the distance with respect to time ds/dt or the speed, is inversely proportional to time squared. Well, that's not what they said. They said it's inversely proportional to the square of the distance it has traveled.

So we like that choice.

More Articles

View All
Anthony Mackie Descends a Cliff Face | Running Wild with Bear Grylls
[dramatic music] BEAR GRYLLS: Anthony Mackie and I are high in the Dolomite Mountains of Italy. Doing a great job, Anthony, well done. We’re using an old hemp rope, just like soldiers would use in World War I, to descend the sheer rock face. It’s about no…
7 Ways to Maximize Misery 😞
Happiness – many will advise you how to obtain it, but maybe you’re not trying to be happy. Your actions aim for the opposite. You want to be the saddest saddo sailing on the sea of sadness – much easier to achieve, and this video has 7 tactics to get you…
5 Brutal Truths Men Need to Accept to Live Their Best Lives
Mr. Wonderful here. In this video, I’m going to share the brutal truths you need to accept to live your best life. Number one: your appearance. How you look, how other people see you. You should start worrying about your appearance when you’re in your ea…
Storytelling: A Double-Edged Sword
There was once a village decimated by war, a war its people didn’t ask for. After four years, the killings ended, but the devastation had only just begun. Those who survived were left standing on the streets for hours, waiting for their only chance at a m…
Intro to radioactive decay | Physics | Khan Academy
What comes to your mind when you hear the word radioactive? Well, for me, it was this danger, right? But in this video, we’re going to try to understand what exactly is radioactive or what does it mean and why is it so dangerous and how can the same thing…
The Brightest Part of a Shadow is in the Middle
Where is the darkest part of a shadow? I mean, the obvious answer seems to be right in the middle. If you look closely at a shadow, as you move the object away from the wall, you notice that the shadow gets a bit fuzzy. So clearly, the edges are lighter. …