yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Finding definite integrals using area formulas | AP Calculus AB | Khan Academy
[Instructor] We’re told to find the following integrals, and we’re given the graph of f right over here. So this first one is the definite integral from negative six to negative two of f of x dx. Pause this video and see if you can figure this one out …
Orbital motion | Physics | Khan Academy
If a satellite has just the right velocity, then we can make sure that the force of gravity will always stay perpendicular to that velocity vector. In that case, the satellite will go in a perfect circular orbit, because the gravitational force will act l…
The worst self improvement mistake
I feel like all of us at some point in our life have gotten into a bit of a rut, a period of our life where motivation is hard to come by. We’re not feeling as energetic and motivated as we usually are about life in general. And the goals that we’ve set f…
HUGE changes coming to your Credit Score in 2019…
What’s up you guys, it’s Graham here. So, as you guys know, I like to variate the topics I have in this channel, from real estate investing to personal finance, all the way to passive income and what to do when you win the 1.6 billion dollar Mega Millions…
Ottoman, Safavid and Mughal Empires | World History | Khan Academy
We are now going to go further in our study of the evolution of the empires in Asia, and in this video, we’re going to focus on what happens in North India, Persia, the Middle East, and the Anatolian Peninsula, what we would consider modern-day Turkey. So…
Foundations of American Democracy - Course Trailer
Welcome to Foundations of American Democracy. This is where it all begins. You might think it’s just about the United States, but here we’re going to go much deeper and much further back than that. We’re going to go to the original ideas, dive into philos…