yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Why Startup Founders Should Launch Companies Sooner Than They Think
What’s going on is that founders are just, they’re embarrassed about the state of their own product. They’ve come from companies that have mature, polished products, and they compare their launch to like an Apple launch. If Apple fumbles a launch, the wor…
What's The Most Dangerous Place on Earth?
Hey, Vsauce. Michael here. 93% of all the humans who have ever lived are dead. For every person alive right now, there are 15 people who are no longer alive. The Earth is dangerous… but where is the most dangerous place on Earth? Ignoring freak occurrenc…
Colonizing Mars | StarTalk
So let’s go piece by piece. One-way mission with people who would just agree to go one way, and he sends supplies in advance. There’s going to set up Hab modules. I’ve got an image of what his Hab modules would look like on Mars. I think we can put it up …
Can Chess, with Hexagons?
Chess, the game of war on 64 squares. But I wondered, can chess be played with hexagons? There have been several attempts, the most successful published in a book in the UK in 1973, which I promptly ordered to investigate. While waiting for one of the re…
Benefits explained | Employment | Financial Literacy | Khan Academy
Hi everyone! So, what I’m going to do in this video is really go through a bunch of terms that you’re going to see when thinking about benefits from your employer. The whole goal here is so that you’re never lost when you hear an acronym like 401k—well, t…
This 1960s Group Empowered Black Youth in Brooklyn | National Geographic
Bed-Stuy youth in action with a youth organization that was established in the ‘60s. They would have these activities that would provide young people with a sense of empowerment, and they were engaged with their community. That was the other thing—there w…