yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Peter Lynch: Avoid These 10 Investment Mistakes
This is a very important rule. This is a very, it’s one of the key rules: the stock doesn’t know you own it. Remember that you could be a miserable person; you could have, uh, you know, never helped anybody, never done anything right, had 67 spouses, neve…
15 Ways to Get Mentally Stronger
Did you know that mentally tougher athletes consistently outperform their mentally weaker counterparts? A recent study has shown that roughly 80 percent of mentally tough athletes tend to achieve more or perform better. Now, it goes without saying that be…
Why It’s Hard to Forecast the Weather | National Geographic
People have short memories, and you’re only as good as your last forecast. So, if you mess up a forecast, especially a high impact forecast, people will remember that. A 3-day forecast today is about as accurate as a 1-day forecast was in the 1970s. If yo…
Partial derivatives of vector fields
So let’s start thinking about partial derivatives of vector fields. A vector field, as a function, I’ll do—I’ll just do a two-dimensional example here—is going to be something that has a two-dimensional input, and then the output has the same number of di…
Deep Inside the First Wilderness | Podcast | Overheard at National Geographic
What are you doing, Katie? Oh, I’m just uh heading over to this other rock to get uh the clearest shot of this amazing landscape. So, this other rock that’s like on the edge of a cliff? Just another rock that has about a 955-foot drop to the river in t…
What Are Atoms and Isotopes?
So what’s an atom? An atom is, um, oh man, something that builds up everything. An atom, oh that one, um, the small particle, isn’t it? That’s a very small, um, particle. An atom was the smallest indivisible part of an element. You can further divide an a…