yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Heat transfer and thermal equilibrium | Thermodynamics | AP Chemistry | Khan Academy
Let’s see. We have two samples of helium gas. One sample of helium gas is at temperature t1, and the other sample of helium gas is at temperature t2. If t2 is greater than t1, that means, on average, the particles of helium gas in the second box are movin…
How we use the video wall to sell corporate jets.
This is an Airbus 319 320. So, usually when somebody comes in, I’ll send them in here for a little bit to sort of get the feeling of being in the plane. I’ll say, “How much you want to spend?” So let’s say the guys want to spend 20 million bucks. Out of …
Net exports and capital outflows
Let’s take a look at our GDP equation for an open economy. So, GDP is equal to national income, and that’s going to be equal to consumption plus investment plus government spending. And since this is an open economy, plus net exports. Now, the first thi…
How do you make a Virtual Reality Glove? - Smarter Every Day 191
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I want this video to be long, and I want it to get down into the weeds and just air out and let me get as technical as I want to. In the last episode of Smarter Every Day, you got to see me interact…
How To Invest In 2020 | My Concerns
What’s up guys? It’s Graham here. So let’s attempt to answer the age-old question—a question that’s been unanswered for thousands of years, a question that historians have been pondering since the beginning of time—and that would be: how to invest in 2020…
Mark Zuckerberg on Taking Risks and Finding Talented People
And just to make this point, how far into Facebook did it actually become a company? Um, I don’t know. I think probably it