yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
10 BAD@SS Online Games!
[Music] It’s fun to dress up your elf princess. But if you’re looking for an online game that’ll put some hair on your chest, let’s take a look at 10 incredibly badass online games. First, Mechanical Commando, a top-down shooter that asks, why would you …
It Started: The Upcoming Housing Collapse - Round 2
What’s up, Graham? It’s guys here. So, we got to talk about the housing market because after two years of non-stop bidding wars, price increases, and low inventory, believe it or not, asking prices have begun to fall. Except for Betty White’s house, which…
TRACTOR PULLS: It's Not What You Think - Smarter Every Day 276
This is an absolutely preposterous tractor and it’s pulling [Music]. Something; all these people are in these stands to watch what’s called a tractor pull because it’s awesome. The winner is whoever pulls this sled the farthest before getting bogged down …
Why Humans Are Vanishing
Every two years, one million Japanese disappear. China’s population will halve by the end of the century; the median age in Italy has reached 48. All around the world, birth rates are crashing. Is humanity dying out? What is going on and how bad is it? F…
Charlie Munger's SCARY Inflation Warning (2022)
What makes life interesting is we don’t know how it’s going to work out. I think we do know we’re flirting with serious trouble. Inflation is at such high levels right now that those of us under the age of 40 have never even lived through a period of such…
What you MUST KNOW about Robinhood Investing
What’s the guys? It’s Graham here. Now, normally I would never make two Robin Hood videos like this back-to-back, but I gotta say, this entire event has been extremely mind-boggling. There have been some new events that have just come up over the last day…