yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
A warning about Robinhood's 3% Checking Account…
What’s up you guys, it’s Graham here. So I’ll just get right into it. CNBC just recently published an article saying that Robinhood, the stock trading platform, is now going to be offering checking and savings accounts. My initial reaction to this was gre…
My BEST techniques for a successful Open House
What’s up you guys! It’s Grand here. So, I’m finishing up an open house right now, and I thought, what better time than right now to make a video about how to hold an open house? So, I’m going to be sharing my tips, my tricks, and some of the things that …
Kevin O'Leary Delivers THE COLD HARD TRUTH on Fox and Friends
Forgiving hopeful entrepreneurs the cold hard truth that he, these Shark Tank. I love the show. Joining us right now, Kevin O’Leary, author of “Cold Hard Truth on Men, Women, and Money.” Kevin, welcome. When you joined Shark Tank, did you think you were …
Introduction to the Crusades
We are in the year 1095. Just for context, this is roughly half a century after the Great Schism between the Eastern Orthodox Church, centered in Constantinople, and what eventually gets known as the Roman Catholic Church, or the Latin Church, centered in…
A Visit From The Hudson Bay Company | Barkskins
[door opening] [exhales] Francis, there is an Englishman waiting for you. These tables are no good. No good at all. He is from the Hudson Bay Company. I gave Lafarge exact measurements. A table that will not tilt or list. That is all I ask for, a proper t…
From 2005: Four young internet entrepreneurs
One way to increase your net worth is to use the internet for all it’s worth. Everywhere you look, computer savvy people are doing just that, many of them astonishingly young. Our cover story is reported now by David Pogue of the New York Times. Remember…