yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
7 STOIC PRINCIPLES FOR INNER PEACE | STOICISM
Fellow Stoics, do you feel you can find inner calm even with all the noise today? Imagine handling life’s ups and downs as calmly as a tranquil lake, no matter how turbulent it becomes. Sounds too wonderful to be true? Not exactly! In this video, we will…
Overcoming Self-Hatred
Self-hatred is something I’ve struggled with a lot in the past, so this video is quite personal. The experience of self-hatred often goes together with depression and is basically a mechanism to cope with beliefs about oneself and our position in the grea…
Function as a geometric series | Series | AP Calculus BC | Khan Academy
We’re asked to find a power series for f, and they’ve given us f of x is equal to 6 over 1 + x to the 3 power. Now, since they’re letting us pick which power series, you might say, “Well, let me just find the McLaurin series,” because the McLaurin series …
NEW Apple Credit Card 2019: Rumors and Breakdown
What’s up you guys? It’s Graham here. So the credit card community has been pretty quiet lately. Sign-up bonuses are dwindling, Chase Sapphire is cutting back on some of their benefits, and I thought I was done making credit card videos like this because…
Acid–base indicators | Acids and bases | AP Chemistry | Khan Academy
Acid-base indicators are used in titrations to determine when the equivalence point is reached. Let’s look at a hypothetical indicator. In the protonated form, the indicator has the formula H-I-N. So this would be the acidic proton on this protonated form…
15 RULES of MONEY
Ah, money. Some people say it makes the world go round. Some people chase it tirelessly, like a hamster running on a wheel. Some people speak about money, and others actually have it. Money doesn’t care about your self-esteem, about your religion, about w…