yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
The History of Life, I guess
From sharing the Earth with many other human species merely as hunter-gatherers trying to brave the elements to building rockets, creating the internet, and now with our eyes set on Mars, the history of humanity is one that’s filled with determination, co…
Should You Follow Your Passion? – Dalton Caldwell and Michael Seibel
Guess what gives you passion? You want to hear the secret? Guess what keeps you attached to an idea? That damn thing — working, success, users, revenue numbers — that makes a lot of these folks that have no particular ideas suddenly care a lot more when t…
Introduction to price elasticity of supply | APⓇ Microeconomics | Khan Academy
We’ve done many videos on the price elasticity of demand. Now we’re going to focus on the price elasticity of supply, and it’s a very similar idea; it’s just being applied to supply. Now, it’s a measure of how sensitive our quantity supplied is to percen…
4 Revolutionary Riddles
At the Palace of Discovery in Paris, they have this huge turntable where you can sit and perform experiments. Like, in the middle of the turntable you can put some water and then add liquid nitrogen, and this creates a kind of fog. These tiny water drople…
Mule Mayhem | Live Free or Die
Oh, oh, damn it! Oh, God damn it! Hold, hold, hold! Damn it! Goddamn mules! Hold! No, you hold! Too much traffic, motorcycles, bicyclists—everything was too much for the mule. And once he started plunging down that hill and the jugs were hitting the bush…
All in for Education Livestream with Sal Khan
And she started using the printing out transcripts of Khan Academy - and get-and giving him these sheets of the stacks of paper when she visited him in prison. Through just the transcripts, Jason was able to start realizing that he, you know, in school, h…