yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Face-to-Face With Wildlife in Florida’s Hidden Wilderness | Best Job Ever
When you swim into one of these Springs and then a manatee comes around the corner, it’s like everything slows down and takes a breath. It sometimes will swim right up to you; you can count the whiskers on its face or see the propeller marks on its back. …
Worked example: Using bond enthalpies to calculate enthalpy of reaction | Khan Academy
[Educator] Bond enthalpies can be used to estimate the standard change in enthalpy for a chemical reaction. Let’s use bond enthalpies to estimate the enthalpy of combustion of ethanol. Looking at our balanced equation, we have one mole of ethanol reacti…
Where Are the Aliens?
Let’s talk briefly about the Fermi Paradox, since we’re talking about aliens. For those listeners who don’t know, Enrico Fermi was a famous physicist part of the Manhattan Project, and he said, “Where are the aliens?” The universe is so large; there’s pr…
Worked example: Identifying an element from successive ionization energies | Khan Academy
We are told that the first five ionization energies for a third period element are shown below. What is the identity of the element? So pause this video and see if you can figure it out on your own, and it’ll probably be handy to have a periodic table of …
How to Operate with Keith Rabois (How to Start a Startup 2014: Lecture 14)
Um, so I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product at least some people love, that you prob…
Jim Crow part 3 | The Gilded Age (1865-1898) | US History | Khan Academy
In the last video, we were talking about the era of Reconstruction and how after the Civil War, when the 13th Amendment to the Constitution outlawed slavery, many Southern states enacted laws known as Black Codes. These codes, in many cases, were really j…