yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Lattice energy | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
You may already be familiar with Coulomb’s law, which is really the most important or underlying law behind all of what we know about electrostatics and how things with charge attract or repulse each other. But a simplified version of Coulomb’s law is ju…
Rant: The TRUTH about happiness
I’m just going to rant a little bit about happiness because it seems like a lot of people are very hung up about buying a certain thing, achieving a certain level of success, achieving a certain level of wealth. So many materialistic things that they thi…
History of the Republican Party | American civics | US government and civics | Khan Academy
Hey Kim, hi David! So, with the Republican National Convention coming up in just a couple of weeks as we’re recording this, you thought it would be like a really good idea to sit down and examine the history of the Republican party. So, what’s going on in…
She Explores the Universe with Photos, Ink, and Water | Short Film Showcase
[Music] I’ve always been drawn to stories of exploration: the scope of the vision, the ambition of it, the amount of endurance required, and then, of course, the human history of facing the unknown and pushing into it. So, in 2015, my partner, Jamaican A…
Evolution through variation and natural selection
In this video, we are going to focus even more on the idea of evolution. We introduced it in other videos, but here we’re really going to focus on what it is and what it isn’t. As I’ve mentioned before, it’s a super important idea. If you were to try to u…
A Gun Seizure at Miami International Airport | To Catch a Smuggler
[music playing] OFFICER HERNANDEZ: We’re going to have to take this back to the office. Yeah. That box will not be going to its final destination. I appreciate you carrying the heavy stuff. OFFICER HERNANDEZ: So when it comes to firearms in particular, …