yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
How productive arguments can bring us closer together | Bo Seo, Esther Perel, and Dan Shapiro
One of the reasons why our arguments are so divisive, and painful at present is that we’ve allowed the skills of disagreeing well to atrophy. We no longer view argument as a skill, and as something to be worked at. Rather, we see it as something we jump i…
The secret lives of paintings - Maurizio Seracini
In 1975, I met in Florence, at Professor Carlopa directly, my former professor of world history and today a world-renowned scholar of Leonardo da Vinci. Well, he asked me if I could find some technological way to unfold the five centuries-old mystery rela…
Scale factors and area
We’re told that polygon Q is a scaled copy of polygon P using a scale factor of one half. Polygon Q’s area is what fraction of polygon P’s area? Pause this video and see if you can figure that out. All right, my brain wants to make this a little bit tang…
Animal Survival Technique - Smarter Every Day (T-5)
Hey, it’s me, Destin. We got a lot of rain here in Alabama over the last couple of weeks, and I wanted to show you an interesting survival technique I’ve found in one of the local species. Anyway, you can see all the area behind me used to be a wide ope…
Why I DON'T flip houses (revealing my favorite real estate investing approach)
What’s up you guys, it’s Graham here. So one of the questions I get asked a lot is, am I going to be flipping this place or am I going to be selling it in the short term? The answer is no. In fact, of all five places I bought, I’ve never once wanted to se…
Is Dropping Out of College Throwing Your Life Away? | Ryan Holiday | Big Think
For me, going to college was just an assumption that was made, and there was no challenging whether—if you’re smart and you do well in school, you go to college because that’s how you’re successful in life. And I think that’s true for a lot of people. And…