yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Regional attitudes about slavery, 1754-1800 | US history | Khan Academy
This is a chart that shows the percentage of the total population of each of these colonies and then later states that was made up by enslaved Africans starting in the year 1754, which will show in purple, and comparing that to the year 1800, which we’ll …
Announcing Work at a Startup
Alright guys, so we are here today to talk about work at a startup. Let’s really quickly do some introductions. So Jared, why don’t you start? Hey, I’m Jared. I’m a partner here at YC. The way I got into YC was I did a YC company in one of the earliest b…
Impose | Vocabulary | Khan Academy
Hey there wordsmiths! This video is about the word impose. Impose, it’s a verb, and it means to force something onto others, kind of like how I impose my taste in music on you in these videos. You didn’t ask for this; I just put it on to you, which is in…
Quotient rule | Derivative rules | AP Calculus AB | Khan Academy
What we’re going to do in this video is introduce ourselves to the Quotient Rule, and we’re not going to prove it in this video. In a future video, we can prove it using the Product Rule, and we’ll see it has some similarities to the Product Rule. But her…
The importance of taking a break
What’s up you guys, it’s Graham here. So let’s talk about a topic that seems taboo for a lot of these business motivation mindset channels, and that’s the topic of vacation and taking a break. That’s almost like shunned upon in all of these channels that …
Philosophies That Shaped Millions
Know how it goes: one day we’re born, one day we die. Everything that happens in between we know and understand, but everything that happened before and will happen after we know nothing about. As a result, it’s really difficult to say what exactly the me…