yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (2 of 2) | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • [Voiceover] In the last video, we factored this polynomial in order to find the real roots. We factored it by grouping, which essentially means doing the distributive property in reverse twice. I mentioned that there's two ways you could do it. You could actually, from the get-go, add these two middle degree terms, and then think about it from there.

So, what I thought I'd do is just a quick video on that alternative. If we add, instead of grouping, if we add these middle two terms. Actually, I'll just focus on the fourth degree polynomial here. We know that we have an x out front. This fourth degree polynomial is going to simplify to x to the fourth plus seven x squared minus 18. If we want to factor this, we could recognize a pattern here.

You probably remember. Hopefully, you remember. If you don't, then you might want to review your factoring polynomials. But if you have x plus a times x plus b, that's going to be equal to x squared plus the sum of those two numbers, a and b, as being the coefficient of the x term plus the product of those two numbers. If you just multiply this out, this is what you would get.

But if this was x squared plus a times x squared plus b, instead of this being x squared, this would be x to the fourth. Instead of this being x, this would be x squared, which is exactly the pattern we have here. So, what two a's and b's that if I add them up, I would get seven, and if I were to take their product, I get negative 18?

Well, since their product is negative, we know that they are of different signs. One will be positive, one will be negative. And since their sum is positive, we know that the larger of the two numbers is going to be positive. So, what jumps out at me is nine times negative two. You multiply those, you get negative 18. You take their sum, you get seven.

So, we can rewrite this, just looking at this pattern here as x squared plus nine times x squared minus two. I could say plus negative two. That's the same thing as x squared minus two. And then, that's exactly what we got right over here. Of course, you have this x out front that I didn't consider right over here.

And then, this, as we did in the previous video, you could recognize as a difference of squares and then factor it further to actually find the roots. But I just wanted to show that you could solve this by regrouping, or you can solve this by, I guess you could say, more traditional factoring means. And notice this nine and negative two, this is what was already broken up for us, so we could factor by regrouping.

More Articles

View All
Leading and lagging strands in DNA replication | MCAT | Khan Academy
Let’s talk a little bit in more depth about how DNA actually copies itself, how it actually replicates, and we’re going to talk about the actual actors in the process. Now, as I talk about it, I’m going to talk a lot about the three prime and the five pri…
Examples of bias in surveys | Study design | AP Statistics | Khan Academy
We’re told that David hosts a podcast, and he’s curious how much his listeners like his show. He decides to start with an online poll. He asks his listeners to visit his website and participate in the poll. The poll shows that 89 percent of about 200 resp…
It grows from the barrel of a gun
Chairman now said every communist must grasp the truth: political power grows out of the barrel of a gun. The power of the state is, of course, political, so Chairman Mao could have said that the power of the state grows out of the barrel of a gun. Is thi…
Worked example: convergent geometric series | Series | AP Calculus BC | Khan Academy
Let’s get some practice taking sums of infinite geometric series. So, we have one over here, and just to make sure that we’re dealing with the geometric series, let’s make sure we have a common ratio. So, let’s see: to go from the first term to the seco…
Interpret a quadratic graph | Quadratic functions & equations | Algebra 1 | Khan Academy
Katie throws a ball in the air for her dog to chase. The function f models the height of the ball in meters as a function of time in seconds after Katie threw it. We could see that right over here this is our function f. So at time t equals zero, the hei…
These Divers Search For Slave Shipwrecks and Discover Their Ancestors | National Geographic
I am a light in the bottom of the ocean. [Music] Buried in the silence of years, I am the lights of the spirits. [Music] I often think of the middle passage as the origin story for Africans in the Americas during that transatlantic slave trade period. We …