yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Yes, scientists are actually building an elevator to space - Fabio Pacucci


3m read
·Nov 8, 2024

Sending rockets into space requires sacrificing expensive equipment, burning massive amounts of fuel, and risking potential catastrophe. So, in the space race of the 21st century, some engineers are abandoning rockets for something much more exciting: elevators. Okay, so maybe riding an elevator to the stars isn't the most thrilling mode of transportation. But using a fixed structure to send smaller payloads of astronauts and equipment into orbit would be safer, easier, and cheaper than conventional rockets.

On a SpaceX Falcon 9 rocket, every kilogram of cargo costs roughly $7,500 to carry into orbit. Space elevators are projected to reduce that cost by 95%. Researchers have been investigating this idea since 1895, when a visit to what was then the world's tallest structure inspired Russian scientist Konstantin Tsiolkovsky. Tsiolkovsky imagined a structure thousands of kilometers tall, but even a century later, no known material is strong enough to support such a building.

Fortunately, the laws of physics offer a promising alternative design. Imagine hopping on a fast-spinning carousel while holding a rope attached to a rock. As long as the carousel keeps spinning, the rock and rope will remain horizontal, kept aloft by centrifugal force. If you're holding the rope, you'll feel this apparent, inertial acceleration pulling the rock away from the center of the rotating carousel.

Now, if we replace the carousel with Earth, the rope with a long tether, and the rock with a counterweight, we have just envisioned the modern space elevator—a cable pulled into space by the physics of our spinning planet. For this to work, the counterweight would need to be far enough away that the centrifugal force generated by the Earth's spin is greater than the planet's gravitational pull. These forces balance out at roughly 36,000 kilometers above the surface, so the counterweight should be beyond this height.

Objects at this specific distance are in geostationary orbit, meaning they revolve around Earth at the same rate the planet spins, thus appearing motionless in the sky. The counterweight itself could be anything, even a captured asteroid. From here, the tether could be released down through the atmosphere and connected to a base station on the planet's surface.

To maximize centrifugal acceleration, this anchor point should be close to the Equator. And by making the loading station a mobile ocean base, the entire system could be moved at will, allowing it to maneuver around extreme weather and dodge debris and satellites in space. Once established, cargo could be loaded onto devices called climbers, which would pull packages along the cable and into orbit.

These mechanisms would require huge amounts of electricity, which could be provided by solar panels or potentially even nuclear systems. Current designs estimate that it would take about 8 days to elevate an object into geostationary orbit. And with proper radiation shielding, humans could theoretically take the ride too.

So, what's stopping us from building this massive structure? For one thing, a construction accident could be catastrophic. But the main problem lies in the cable itself. In addition to supporting a massive amount of weight, the cable's material would have to be strong enough to withstand the counterweight's pull. And because this tension and the force of gravity would vary at different points, its strength and thickness would need to vary as well.

Engineered materials like carbon nanotubes and diamond nano-threads seem like our best hope for producing materials strong and light enough for the job. But so far, we've only been able to manufacture very small nanotube chains. Another option would be to build one somewhere with weaker gravity. Space elevators based on Mars or the Moon are already possible with existing materials.

But the huge economic advantage of owning an Earth-based space elevator has inspired numerous countries to try and crack this conundrum. In fact, some companies in China and Japan are already planning to complete construction by 2050.

More Articles

View All
A Place for Cheetahs | National Geographic
The last thing we want to do is lose this cat after a long journey and all this effort and all the permitting and everything that’s gone into getting him here. Yeah, and if you’ve got a dart gun, right, running full here into this fence. So these are four…
Meru: Filming the Epic Climb | Nat Geo Live
We called this talk “The Making of Meru” to try to give you guys some insight on how a story like this, you know, a climb like this of rather epic, historic proportions can be translated into a film for a general audience that may have absolutely no knowl…
Scratch your brain #Shorts
Scratching out one of your notes means you’re noting that the note no longer needs to be noted. Try saying that five times really fast. These are shower thoughts. Another tongue twister: the more I light my lighter, the lighter my lighter gets until it’s…
The 5 Biggest Mistakes People Make In Their 20’s (And How To Avoid Them!)
What’s up you guys? It’s Graham here. Now, it sounds really weird to say, but I’m nearly finished up with my 20s. In two years, I’m gonna be 30 years old! That sounds really weird to say; that’s trippy. The same almost 30 sounds better than saying 28. Bu…
Daylight Saving Time Explained
Every year some countries move their clocks forward in the spring only to move them back in the autumn. To the vast majority of the world who doesn’t participate in this odd clock fiddling, it seems a baffling thing to do. So what’s the reason behind it? …
Direction of reversible reactions | Equilibrium | AP Chemistry | Khan Academy
As an example of a reversible reaction, let’s look at the hypothetical reaction where diatomic gas X₂ turns into its individual atoms, X. It would turn into two of them, so X₂ goes to 2X. The forward reaction is X₂ turning into 2X, and the reverse reactio…