yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing polynomials by x (no remainders) | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

What I'd like to do in this video is try to figure out what ( x ) to the fourth minus ( 2x ) to the third plus ( 5x ) divided by ( x ) is equal to. So pause this video and see if you can have a go at that before we work through this together.

All right, so if we're saying what is this top expression divided by this bottom expression, another way to think about it is what do I have to multiply? So I'm going to multiply something; I'll put that in parentheses. If I multiply that something times ( x ), I should get ( x ) to the fourth minus ( 2x ) to the third plus ( 5x ).

Now, how do I approach that? Well, there are two ways that I could tackle it. One way is I could just rewrite this expression as being, and I will just make this ( x ) in yellow so I can keep track of it. I could just rewrite this as ( 1 ) over ( x ) times ( x ) to the ( 4th ) minus ( 2x ) to the third plus ( 5x ), and then I can distribute the ( 1 ) over ( x ).

So what is that going to be equal to? What’s it going to be equal to ( x ) to the fourth over ( x ) minus ( 2x ) to the third over ( x ) plus ( 5x ) over ( x )? So what are each of these going to be equal to? ( x ) to the ( 4th ) divided by ( x ): if I have 4 ( x's ) that I'm multiplying together and then I divide by ( x ), that’s going to be equivalent to ( x ) to the third power. So this right over here is equal to ( x ) to the third.

You could also get there from your exponent properties; in the denominator, you have an ( x ) to the first power, and so you would subtract the exponents. You have the same base here, so that’s ( x ) to the third. And then this part right over here, what would that equal to? Well, it's going to be minus ( 2x ) to the third divided by ( x ) to the first. Well, by the same property, that's going to be ( x^2 ).

And then, last but not least, if you take five ( x's ) and then you divide by ( x ), you are just going to be left with five. You can verify that this indeed, if I were to multiply it by ( x ), I'm going to get ( x ) to the fourth minus ( 2x ) to the third plus ( 5x ).

Let me do that; if I put ( x ) to the third minus ( 2x^2 ) plus ( 5 ) times ( x ), what I can do is distribute the ( x ). ( x ) times ( x ) to the third is ( x^4 ), ( x ) times negative ( 2x^2 ) is negative ( 2x^3 ), ( x ) times ( 5 ) is ( 5x ).

Now, I mentioned there are two ways that I could do it. Another way that I could try to tackle it is I could look at this numerator and try to factor an ( x ) out. I would try to factor out whatever I see in the denominator. So if I do that, actually, let me just rewrite the numerator.

So I can rewrite ( x ) to the fourth as ( x ) times ( x^3 ), and then I can rewrite the minus ( 2x ) to the third as, let me write it this way, as plus ( x ) times negative ( 2x^2 ), and then I could write this ( 5x ) as being equal to plus ( x ) times ( 5 ).

Then I’m going to divide everything by ( x ). I just rewrote the numerator here, but for each of those terms, I factored out an ( x ). Now I can factor out ( x ) out of the whole thing. So I sometimes think of factoring out an ( x ) out of the whole thing as reverse distributive property.

So if I factor out this ( x ) out of every term, what am I left with? I'm left with ( x ) times ( x^3 - 2x^2 + 5 ). I ended up doing that in the wrong color, but hopefully, you're following—plus ( 5 ), and then all of that is divided by ( x ).

As long as ( x ) does not equal zero, ( x ) divided by ( x ) is going to be equal to one. And we're left with what we had to begin with, or the answer that we had to begin with.

So these are two different approaches. Nothing super sophisticated here. When you're dividing by ( x ), you're just like, "Hey, that's the same thing as multiplying every term by ( 1 ) over ( x )" or you can factor out an ( x ) out of the numerator, and then they cancel out.

More Articles

View All
Saving Lions: How I’m Protecting Wildlife in My Homeland | Nat Geo Live
THANDIWE MWEETWA: Our beautiful wilderness is in trouble. It’s being hammered on all sides by human encroachment, poaching, and habitat degradation. And our mission is to save these large cats, wild dogs, and all these other species in our beautiful ecosy…
The Stanford Prison Experiment: Unlocking The Truth | Official Trailer | National Geographic
I’ve only been in jail once: the Stanford prison experiment. In the summer of 1971, Dr. Zimbardo took a bunch of college kids, randomly assigned them to be prisoners and guards, and locked them in the basement. The only thing we told the guards was, “Do w…
Types of competition and marginal revenue | APⓇ Microeconomics | Khan Academy
We’ve already had several videos where we talk about the types of markets that we might look at in economics. At one end, you might have perfect competition. Let’s write perfect comp. This is where you have many firms. What they produce is not differenti…
Reflexive pronouns | The parts of speech | Grammar | Khan Academy
Hello grammarians! Let’s talk about reflexive pronouns. And just as a word of warning, this means I’m going to be talking about myself a lot. What I mean is that in English, we have this distinction between the personal pronoun, um, so for example, me, an…
Einstein velocity addition formula derivation | Special relativity | Physics | Khan Academy
Let’s say this is me and I am floating in space. My coordinate system, my frame of reference. We’ve seen it before; we’ll call it the S frame of reference. Any space in any point in space-time, we give it X and Y coordinates. And let’s say that we have m…
Long run self adjustment | AP Macroeconomics | Khan Academy
What we have depicted here is an economy in long-run equilibrium. Notice the point at which the aggregate demand curve and the short-run aggregate supply curve intersect; that specifies an equilibrium price level (P₁) and an equilibrium level of output (Y…