yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to get an appreciation that you could have many, in fact, you could have an infinite number of functions that have the same limit as X approaches infinity. So, if we were to make the general statement that the limit of some function f of x as X approaches infinity is equal to three, what I want to do in this video is show some examples of that and to show that we can keep creating more and more examples—really an infinite number of examples—where that is going to be true.

So, for example, we could look at this graph over here, and you in other videos will think about why this is the case, but just think about what happens when you have very, very large X's. When you have very, very large X's, the plus five doesn't matter as much. It gets closer and closer to 3x² over x², which is equal to 3. You could see that right over here—it's graphed in this green color. Even when X is equal to 10, we're getting awfully close to three right over there.

Let me zoom out a little bit so you see our axes. So, that is three. Let me draw a dotted line, and the asymptote that is y is equal to 3. You see the function is getting closer and closer as X approaches infinity. But that's not the only function that could do that. As I keep saying, there's an infinite number of functions that could do that.

You could have this somewhat wild function that involves natural logs that, as X approaches infinity, is getting closer and closer to three. It might be getting closer to three at a slightly slower rate than the one in green, but we're talking about infinity. As X approaches infinity, this thing is approaching three.

As we've talked about in other videos, you could even have things that keep oscillating around the asymptote—as long as they're getting closer and closer to it as X gets larger and larger and larger.

So, for example, that function right over there—let me zoom in. When, let's say, X is equal to 14, we can see that they're all approaching three. The purple one is oscillating around it, the other two are approaching three from below. But as we get much larger—let me actually zoom out a ways and then I'll zoom in.

So let's get to really large values. Actually, even 100 isn't even that large if we're thinking about infinity. Even a trillion wouldn't be that large if we're thinking about infinity. But let's go to 200. 200 is much larger than the numbers we've been looking at, and let me zoom in when X is equal to 200. You can see we have to zoom in an awful lot—awful lot—just to see that the graphs still aren't quite stabilized around the asymptote.

They are a little bit different than the asymptote. I am really zoomed in. I mean, look at this scale—each of these are now a hundredth each square. We've gotten much, much, much closer to the asymptote. In fact, the green function—we still can't tell the difference. You can see the calculation is up to three or four decimal places. We're getting awfully close to three now, but we aren't there.

So, the green function got there the fastest—it's an argument. But the whole point of this is to emphasize the fact that there's an infinite number of functions for which you could make the statement that we made: that the limit of the function as X approaches infinity, in this case, we said that limit is going to be equal to three.

I just picked three arbitrarily. This could be true for any function. I'm trying—well, I didn't realize how much I had zoomed in—so let me now go back to the origin where we had our original expression. So there we have it. Maybe I could zoom in this way. So there you have it: the limit of any of these as X approaches infinity is equal to three.

More Articles

View All
Marten Hat | Life Below Zero
So once I get them to this point, a lot of times I like to hang them up so I can work on them a little bit better. Very little goes to waste. You want to kind of take your time and get it started pretty good, and you can pretty much just pull straight dow…
The Priceless Benefits of Not Belonging
The experience of not belonging can manifest itself in different ways. You may not have belonged to the popular groups at school, perhaps you don’t belong to a certain religious community, maybe you’re the town’s fool, or your family doesn’t want to see y…
Amputee Skier Shreds Expectations | Short Film Showcase
His talent pretty much exceeds most any skier I’ve ever seen. He got just to be this incredible, incredible skier. It’s impressive. Vu is probably the best athlete I’ve seen and worked with. I do forget that he has, he has got the one leg. My name is Bas…
15 Risks You Must Take in Life
All your life you take some risks, right? Like drinking that third coffee at 5 p.m., not knowing if you’re going to sleep or not. You risk going hiking, not being sure if it’s really going to be that sunny outside or if you’re going to run into a bear. Al…
YC SUS: Eric Migicovsky hosts founder office hours
All right, hi everyone. Um, my name is Eric Mikowski. I’m the course facilitator here at Startup School. Um, excited to do another round of online office hours with companies in Startup School. So, office hours, um, for those that might be tuning in for …
Artist Lauren McCarthy Will Be Your Home's Brain
So today we have Lauren McCarthy. She is an artist based in LA. Could you give us a quick background? Sure. Um, I’m an artist based in LA. I’m an assistant professor here at UCLA Design Media Arts, but my art is basically thinking about what are the syst…