yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to get an appreciation that you could have many, in fact, you could have an infinite number of functions that have the same limit as X approaches infinity. So, if we were to make the general statement that the limit of some function f of x as X approaches infinity is equal to three, what I want to do in this video is show some examples of that and to show that we can keep creating more and more examples—really an infinite number of examples—where that is going to be true.

So, for example, we could look at this graph over here, and you in other videos will think about why this is the case, but just think about what happens when you have very, very large X's. When you have very, very large X's, the plus five doesn't matter as much. It gets closer and closer to 3x² over x², which is equal to 3. You could see that right over here—it's graphed in this green color. Even when X is equal to 10, we're getting awfully close to three right over there.

Let me zoom out a little bit so you see our axes. So, that is three. Let me draw a dotted line, and the asymptote that is y is equal to 3. You see the function is getting closer and closer as X approaches infinity. But that's not the only function that could do that. As I keep saying, there's an infinite number of functions that could do that.

You could have this somewhat wild function that involves natural logs that, as X approaches infinity, is getting closer and closer to three. It might be getting closer to three at a slightly slower rate than the one in green, but we're talking about infinity. As X approaches infinity, this thing is approaching three.

As we've talked about in other videos, you could even have things that keep oscillating around the asymptote—as long as they're getting closer and closer to it as X gets larger and larger and larger.

So, for example, that function right over there—let me zoom in. When, let's say, X is equal to 14, we can see that they're all approaching three. The purple one is oscillating around it, the other two are approaching three from below. But as we get much larger—let me actually zoom out a ways and then I'll zoom in.

So let's get to really large values. Actually, even 100 isn't even that large if we're thinking about infinity. Even a trillion wouldn't be that large if we're thinking about infinity. But let's go to 200. 200 is much larger than the numbers we've been looking at, and let me zoom in when X is equal to 200. You can see we have to zoom in an awful lot—awful lot—just to see that the graphs still aren't quite stabilized around the asymptote.

They are a little bit different than the asymptote. I am really zoomed in. I mean, look at this scale—each of these are now a hundredth each square. We've gotten much, much, much closer to the asymptote. In fact, the green function—we still can't tell the difference. You can see the calculation is up to three or four decimal places. We're getting awfully close to three now, but we aren't there.

So, the green function got there the fastest—it's an argument. But the whole point of this is to emphasize the fact that there's an infinite number of functions for which you could make the statement that we made: that the limit of the function as X approaches infinity, in this case, we said that limit is going to be equal to three.

I just picked three arbitrarily. This could be true for any function. I'm trying—well, I didn't realize how much I had zoomed in—so let me now go back to the origin where we had our original expression. So there we have it. Maybe I could zoom in this way. So there you have it: the limit of any of these as X approaches infinity is equal to three.

More Articles

View All
Kayaking Alaska’s Newly Discovered River Canyon | Best Job Ever
The thing that really drives me the most is exploratory kayaking, paddling down these rivers that have never been paddled before. Our goal here is to paddle the headwaters canyon of the Chitina River, this unrung section. So, the headwaters canyon of the …
How The Economic Machine Works by Ray Dalio
How the economic machine works, in 30 minutes. The economy works like a simple machine. But many people don’t understand it — or they don’t agree on how it works — and this has led to a lot of needless economic suffering. I feel a deep sense of responsibi…
Underwater Lost City in England | Lost Cities With Albert Lin
ALBERT LIN (VOICEOVER): Maritime archaeologist Garry Momber has been exploring these waters for 20 years. Thank you. ALBERT LIN (VOICEOVER): The English Channel is a notoriously difficult place to dive. Meticulous preparations are vital. Visibility isn’t…
It Started: Housing Prices Are Collapsing
What’s up guys? It’s Graham here. So, we’ve got some bad news for the housing market, and unfortunately, it’s expected to get a lot worse. That’s because a new report just found that nearly 10 percent of homes purchased in the last nine months are now ups…
Introduction to real gases | Intermolecular forces and properties | AP Chemistry | Khan Academy
In several other videos, we have talked about the ideal gas law, which tells us that pressure times volume is going to be equal to the number of moles times the ideal gas constant times the temperature measured in Kelvin. Now, in all of our studies of the…
Jordan Peterson | You Have No More Time
You need a family. You need friends. You don’t need to have all these things, but you better have most of them: family, friends, career, educational goals, plans for, you know, time outside of work, attention to your mental and physical health, etc. You k…