yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to get an appreciation that you could have many, in fact, you could have an infinite number of functions that have the same limit as X approaches infinity. So, if we were to make the general statement that the limit of some function f of x as X approaches infinity is equal to three, what I want to do in this video is show some examples of that and to show that we can keep creating more and more examples—really an infinite number of examples—where that is going to be true.

So, for example, we could look at this graph over here, and you in other videos will think about why this is the case, but just think about what happens when you have very, very large X's. When you have very, very large X's, the plus five doesn't matter as much. It gets closer and closer to 3x² over x², which is equal to 3. You could see that right over here—it's graphed in this green color. Even when X is equal to 10, we're getting awfully close to three right over there.

Let me zoom out a little bit so you see our axes. So, that is three. Let me draw a dotted line, and the asymptote that is y is equal to 3. You see the function is getting closer and closer as X approaches infinity. But that's not the only function that could do that. As I keep saying, there's an infinite number of functions that could do that.

You could have this somewhat wild function that involves natural logs that, as X approaches infinity, is getting closer and closer to three. It might be getting closer to three at a slightly slower rate than the one in green, but we're talking about infinity. As X approaches infinity, this thing is approaching three.

As we've talked about in other videos, you could even have things that keep oscillating around the asymptote—as long as they're getting closer and closer to it as X gets larger and larger and larger.

So, for example, that function right over there—let me zoom in. When, let's say, X is equal to 14, we can see that they're all approaching three. The purple one is oscillating around it, the other two are approaching three from below. But as we get much larger—let me actually zoom out a ways and then I'll zoom in.

So let's get to really large values. Actually, even 100 isn't even that large if we're thinking about infinity. Even a trillion wouldn't be that large if we're thinking about infinity. But let's go to 200. 200 is much larger than the numbers we've been looking at, and let me zoom in when X is equal to 200. You can see we have to zoom in an awful lot—awful lot—just to see that the graphs still aren't quite stabilized around the asymptote.

They are a little bit different than the asymptote. I am really zoomed in. I mean, look at this scale—each of these are now a hundredth each square. We've gotten much, much, much closer to the asymptote. In fact, the green function—we still can't tell the difference. You can see the calculation is up to three or four decimal places. We're getting awfully close to three now, but we aren't there.

So, the green function got there the fastest—it's an argument. But the whole point of this is to emphasize the fact that there's an infinite number of functions for which you could make the statement that we made: that the limit of the function as X approaches infinity, in this case, we said that limit is going to be equal to three.

I just picked three arbitrarily. This could be true for any function. I'm trying—well, I didn't realize how much I had zoomed in—so let me now go back to the origin where we had our original expression. So there we have it. Maybe I could zoom in this way. So there you have it: the limit of any of these as X approaches infinity is equal to three.

More Articles

View All
Arctic Geese Chicks Jump Off Cliff to Survive | Hostile Planet
[Narrator] Spring has arrived here early. (serene music) (wind rustling) And that’s bad news for the barnacle geese that breed in these mountains. Many nests have failed, but not this one. (contemplative music) (goslings chirping) Three chicks, they’re lu…
15 Wealth Killing Mistakes Parents Make
Why hello there my friend. Now, I hate to break this to you, but many of you are in a toxic relationship with money. If you’re not careful, you’re going to pass on that toxicity to your children. Your actions are teaching them how to behave with money, an…
How to Transform Yourself in Solitude | Useful Ways to Spend Time Alone
The Zhongnan mountains - located in the Shaanxi Province in China - have been a dwelling place for Taoist hermits for at least more than two thousand years. For centuries, they’ve been seeking refuge from society, and for different reasons. Some pursued a…
7 Most ANNOYING Online Gamers: V-LIST #3
Hey everyone! I’m Lacy, and this is BTW on Bauce. This week, I’m talking about online gaming, specifically the people that you meet online. You know exactly who I’m talking about. They’re the people that are always there, and they always annoy you, and ye…
The Sinking of the SS Athenia | WW2 Hell Under the Sea
NARRATOR: As the opening day of the Second World War fades, Lemp strains to identify the ship in front of him. CHRISTIAN JENTZSCH: It’s behaving, in his opinion, like an auxiliary cruiser because it’s zig-zagging and it’s blacked out. And he even imagine…
Canada's Wild Rivers - 360 | Into Water
Freshwater ecosystems are a lifeline to our very existence. They support immense biodiversity, provide clean drinking water, and are powerful places where we can connect to both nature and ourselves. I’m Dalal Hannah, I’m a freshwater ecologist and Natio…