yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to get an appreciation that you could have many, in fact, you could have an infinite number of functions that have the same limit as X approaches infinity. So, if we were to make the general statement that the limit of some function f of x as X approaches infinity is equal to three, what I want to do in this video is show some examples of that and to show that we can keep creating more and more examples—really an infinite number of examples—where that is going to be true.

So, for example, we could look at this graph over here, and you in other videos will think about why this is the case, but just think about what happens when you have very, very large X's. When you have very, very large X's, the plus five doesn't matter as much. It gets closer and closer to 3x² over x², which is equal to 3. You could see that right over here—it's graphed in this green color. Even when X is equal to 10, we're getting awfully close to three right over there.

Let me zoom out a little bit so you see our axes. So, that is three. Let me draw a dotted line, and the asymptote that is y is equal to 3. You see the function is getting closer and closer as X approaches infinity. But that's not the only function that could do that. As I keep saying, there's an infinite number of functions that could do that.

You could have this somewhat wild function that involves natural logs that, as X approaches infinity, is getting closer and closer to three. It might be getting closer to three at a slightly slower rate than the one in green, but we're talking about infinity. As X approaches infinity, this thing is approaching three.

As we've talked about in other videos, you could even have things that keep oscillating around the asymptote—as long as they're getting closer and closer to it as X gets larger and larger and larger.

So, for example, that function right over there—let me zoom in. When, let's say, X is equal to 14, we can see that they're all approaching three. The purple one is oscillating around it, the other two are approaching three from below. But as we get much larger—let me actually zoom out a ways and then I'll zoom in.

So let's get to really large values. Actually, even 100 isn't even that large if we're thinking about infinity. Even a trillion wouldn't be that large if we're thinking about infinity. But let's go to 200. 200 is much larger than the numbers we've been looking at, and let me zoom in when X is equal to 200. You can see we have to zoom in an awful lot—awful lot—just to see that the graphs still aren't quite stabilized around the asymptote.

They are a little bit different than the asymptote. I am really zoomed in. I mean, look at this scale—each of these are now a hundredth each square. We've gotten much, much, much closer to the asymptote. In fact, the green function—we still can't tell the difference. You can see the calculation is up to three or four decimal places. We're getting awfully close to three now, but we aren't there.

So, the green function got there the fastest—it's an argument. But the whole point of this is to emphasize the fact that there's an infinite number of functions for which you could make the statement that we made: that the limit of the function as X approaches infinity, in this case, we said that limit is going to be equal to three.

I just picked three arbitrarily. This could be true for any function. I'm trying—well, I didn't realize how much I had zoomed in—so let me now go back to the origin where we had our original expression. So there we have it. Maybe I could zoom in this way. So there you have it: the limit of any of these as X approaches infinity is equal to three.

More Articles

View All
Finding your footing in uncertain times: Balancing multiple kids with multiple schedules
The broadcast is now starting. All attendees are in listen-only mode. Hi everybody, thanks so much for joining us today. I’m Vicki Lang. I’m our learning scientist here at Khan Academy, and I’m joined by Dan from our marketing team who will be facilitati…
Dogs: (Prehistoric) Man's Best Friend | National Geographic
There are more dog burials in prehistory than there are burials of any other animals, including cats, for example, or horses. Dogs seem to have a very special place in human communities in the past. As soon as we see in the archaeological record skeletal …
YC Alumni Lightning Round
All right, guys. We uh, we got a break coming up but just a few words in closing, okay? Before we hear from some amazing alumni and then head to our um, happy hour on the roof. Today, we were lucky enough to hear from some of the very best VCs in the val…
Can a Haircut Change Your Life? | The Story of Us
I’m in London to meet Joshua Coombes. He’s a hairdresser. And he believes small acts of love can make a big impact. Joshua hopes he can help the homeless, not by offering them money or food but by giving them a haircut. The reason I started cutting hair …
5 Stoic Secrets for Calm and Fulfilling Relationships | Stoicism
Welcome to Stoicism Insights, where we explore timeless wisdom for modern living. Today, we delve into Stoic principles that can transform your relationships, offering practical tips to foster harmony and inner peace. Stay until the end for a special offe…
Intro to Economics - Course Trailer
Welcome to Introduction to Economics. You are about to become an economically-literate person. You might not realize this, but you’ve always been an economic actor. When you’ve decided to spend your time doing one thing, you might have foregone being ab…