yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
The $3 Trillion Private Equity Bubble is Finally Bursting
There’s been a lot of talk about how the U.S. real estate market is in a bubble, but people are getting it wrong. The real bubble is in a little corner of the finance industry that is unknown to the average person. This industry has trillions of dollars i…
Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy
Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics. So here’s the rand…
15 Situations When You Need To Shut Up And Listen
Most people are unaware of this simple fact: the wise always listen more than they talk. Some folks out there prefer running their mouths without considering that in some situations, this is not going to help their cause. There are several reasons that hu…
Input approach to determining comparative advantage | AP Macroeconomics | Khan Academy
In other videos, we have already looked at production possibility curves and output tables in order to calculate opportunity costs of producing a certain product in a certain country. Then we use that to think about comparative advantage. We’re going to d…
Science Fiction or Real Mechanics? | StarTalk
We have a little quiz, a little game show. I want to know if this mechanical problem is a science fiction problem or a real-life, real mechanical problem? Bona fide mechanical problem. Real or not, is that right? Do we go bing or meh? Yes. So is it a rea…
Why We’re Going Back to the Moon
That’s one small step for man, one diabetes. On July 16, 1969, Apollo 11 blasted off into space carrying three astronauts bound for the Moon. Four days later, Neil Armstrong became the first man to ever set foot on our celestial neighbor, marking a new e…