yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
The Search for a Genetic Disease Cure | Explorer
Iceland’s Decode Laboratories is one of the world’s leading genetic research facilities. Decode has been running large genomic studies now, in fact, for decades. They really did pioneer the standard approach, where what you do is enroll individuals into s…
How Millionaires Think About Business | ft. Randall Kaplan
Kevin: “How good is this flavor?” I said, “It’s fantastic! I worked with the cats; I know they love it.” He said, “No, you’re gonna eat some right now. Prove it!” He made me eat the whole tin in front of the entire sales group. I want to talk about you…
Homeroom with Sal & Tom Inglesby, MD - Tuesday, September 8
Welcome to the Homeroom livestream. We have a very exciting conversation planned, but before we dive into that, I’ll give you my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit organization, and we wouldn’t exis…
How Much Money Would It Take? | Brain Games
To find out what it would take to get someone to change their beliefs, we’ve asked several people of various backgrounds to take part in a little experiment. “Hey, hi, welcome to bringing, as my friend.” “Thank you!” “So I’m gonna ask you a series of q…
MONACO'S BILLIONAIRES SECRETS EXPOSED!
Narrator: A tiny country smaller than Central Park that holds more billionaires per square mile than anywhere else on Earth, but today we’re not just talking about any billionaires; we’re going deeper into a world so exclusive that even money alone can’t …
Quotients that are multiples of 10 | Math | 4th grade | Khan Academy
Let’s solve 240 divided by three. To solve this, we could take this large three-digit number and divide it by a one-digit number, or we could take what we know about tens and zeros and try to break this up into numbers that might be easier for us to work …