yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
Where in the World is Jessica Nabongo? | Podcast | Overheard at National Geographic
[Music] No one knows exactly when humans started traveling, venturing beyond the little corner of the world they knew to discover new places. In some ways, it feels like it’s always been part of who we are as a species. Before babies can even walk or talk…
Reject Most Advice
Regarding the guy that gets rich in five years, one of the tweets that you had on the cutting room floor was: avoid people who got rich quickly; they’re just giving you their winning lottery ticket numbers. This is generally true of advice anyway, which i…
Hershey and Chase conclusively show DNA genetic material
In the last video, we began to see some pretty good evidence that DNA was the molecular basis for inheritance. We saw that from the work of Avery, McCarthy, and Mlead, where they tried to identify whether it was DNA or proteins that acted as a transformat…
5 Stocks the Smart Money is Buying in the 2024 Bubble
So as you guys know, I love tracking the 13F filings of the world’s super investors to see what they’re buying and selling from quarter to quarter. But there’s this really cool website I follow called Data Roma, which compiles a list of 80 famous investor…
Q&A With Grey: Millenia of Human Attention Edition
Hello Internet! I asked for questions, and boy, did you deliver with more than 7,000, so, let’s get started. Question: Immortality! Aging is a degenerative fatal disease of the genes in the same way Parkinson’s is. We’re trying to cure Parkinson’s with g…
15 Expensive Things That Are NOT Worth the Money
You dream about becoming rich so you can afford everything you ever wanted, only to find out that you hate having to take care of so many things. Most expensive things are just a clever way to separate rich people from their money. If last Sunday, we look…