yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
Humpback Whale Migration | Shark vs Whale
NARRATOR: The migrating humpbacks have only one objective now, the safe house of Mozambique. It’s a whale-birthing paradise far from the usual hunting grounds of great white sharks. Vulnerable baby whales can nurse, grow, and gain strength. The adults hav…
15 Steps to GET RICH (Ultimate Guide)
You are watching the Sunday motivational video: 15 steps to get rich. Welcome to a Luxe Calm, the place where future billionaires come to get inspired. If you’re not subscribed yet, you’re missing out! Hello, Alex Aires! We are glad to have you here with…
We deleted social media for 3 days- Mental Glow Up Diaries Episode 3
Social media is the best example of a double-edged sword. If you can use it effectively for your favor, it can be life-changing. You can learn a bunch of new things, you can make friends, you can even make money out of it. But social media facilitates an …
50 Years Ago, This Was a Wasteland. He Changed Everything | Short Film Showcase
[Music] 50 years ago, you couldn’t hardly walk through this place. It was wall to wall. [Music] Brush! There wasn’t any grass, there wasn’t any water. Nobody wanted. [Applause] It on the truck, on the truck! He’s the finest dog in the United States of Am…
The Second Great Awakening - part 2
In the last video, I started discussing the Second Great Awakening, which was this era of increased religious fervor, religious conversion, and religiously inspired social action that happened in the early 19th century of the United States’ history. So ap…
Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy
Let’s say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X. If you’re wondering where this notation comes from for a second derivative, imagine if you started with you…