yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
Better models, better startups.
Um, this can just basically supercharge that and, you know, have one person do the work of 10. Yeah, we call this episode “Better Models, Better Startups.” I think that is literally true for B2B companies, where it’s like the underlying models—like B2B s…
15 Powerful Secrets to Get Rich Sooner
Are you familiar with the misogi ritual? The notion around the misogi is you do something so hard once a year that has an impact on the other 365 days of the year. It has its roots in traveling long distances and sitting underneath an icy waterfall until …
Chromosomes and genes | Inheritance and variation | Middle school biology | Khan Academy
This is a super cute puppy. He has a pink tongue, black fur, and a very friendly personality. We know that when this puppy grows up, he will have a healthy weight of about 70 pounds. He will love to play fetch and enjoy snuggles with his human family. We…
My Thoughts On Gary Vee
What’s up, you guys? It’s Graham here. So I realized that making a video speaking out against GaryVee is quite dangerous, and I’m fully prepared to get some backlash from a video like this because I realize he has one of the most loyal, dedicated fan base…
Our Fight Against Death | Origins: The Journey of Humankind
Humanity’s struggle against death has been our most enduring fight. History has given us one weapon in this existential battle: we fight back with medicine. Tens of thousands of years ago, our ancestors scavenged the natural world for remedies. Imagine th…
Worked example: interval of convergence | Series | AP Calculus BC | Khan Academy
So we have an infinite series here, and the goal of this video is to try to figure out the interval of convergence for this series. That’s another way of saying, for what x values, what range of x values is this series going to converge? And like always, …