yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
Solar Energy| Energy Resources and Consumption| AP Environmental science| Khan Academy
The sun is about 93 million miles away, which means it takes about eight minutes for light from the sun to reach Earth. But it’s still close enough for us to take advantage of solar energy, and why wouldn’t we want to? After all, solar energy is renewable…
How Apocalypses Paved the Way for Humans (and terror birds) | Nat Geo Explores
Everybody thinks mass extinctions are a bad thing, and for some, yeah, they were literally the worst. But they also show how nature can bounce back. In fact, while extinctions are like a large scale delete button, they’re also a way to trigger some new am…
Equilibrium nominal interest rates in the money market | AP Macroeconomics | Khan Academy
So we’ve spent a lot of time justifying why we have this downward sloping demand curve for money, but you’re probably asking, “Well, this is a market. What we need to think about an equilibrium point?” And to do that, we need to think about the supply of …
Ivory-Like "Helmets" Are Driving These Birds to Extinction | National Geographic
Among homegirls in the world, the helmet of hornbill is the most unique species. The only hundred species who has a solid cusp features has been recognized for its ivory light quality. Well, we know that it just lives in the old ancient Sunday forests of …
Unlocking the Power of Your Mind with Neuralink Technology #Shorts
Neuralink cuts out the middleman and allows input and output directly from your brain to whatever you’re doing on a machine or vice versa. It’s like going from writing using a quill to having a pencil, to having a keyboard, to having Siri, to now potentia…
Equivalent ratios
We’re asked to select three ratios that are equivalent to seven to six. So pause this video and see if you can spot the three ratios that are equivalent to seven to six. All right, now let’s work through this together. The main thing to realize about equ…