yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential model word problem: medication dissolve | High School Math | Khan Academy


2m read
·Nov 11, 2024

Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function:

In how many hours will Carlos have 1 milligram of medication remaining in his bloodstream? So, M of T is equal to... So we need to essentially solve for M of T, which is equal to 1 milligram, because M of T outputs whatever value it outputs, and it's going to be in milligrams. So let's just solve that.

M of T is defined; its model is an exponential function: 20 * e^(0.8T) = 1. So let's see if we can divide both sides by 20. Then we will get e^(0.8T) = 1/20, which we could write as 0.05. I have a feeling we’re going to have to deal with decimals here regardless.

So how do we solve this? Well, one way to think about it is if we took the natural log of both sides. Just as a reminder, the natural log is the logarithm base e. Let me rewrite this a little bit differently. So this says 0.05. Now I’m going to take the natural log of both sides.

So, Ln, Ln… The natural log says what power do I have to raise e to, to get to e^(0.8T)? Well, I’ve got to raise e to the negative 0.8T power. So that’s why the left-hand side simplified to this.

And that’s going to be equal to the natural log… Actually, I'll just leave it in those terms: the natural log of 0.05. Now we can divide both sides by 0.8 to solve for T. So let's do that.

We divide by 0.8, and so T is going to be equal to all this business on the left-hand side. Now we just have a T, and on the right-hand side, we have all this business, which I think a calculator will be valuable for.

Let me get a calculator out, clear it, and let’s start with 0.05. Let’s take the natural log—that’s that button right over there. The natural log, we get that value. Now we want to divide it by -0.8.

So, divided by -0.8, so let's see… They want us to round to the nearest hundredth. So it will take approximately 3.74 hours for his dosage to go down to 1 milligram.

It actually started at 20 milligrams when T equals 0. After 3.74 hours, he’s down to 1 milligram in his bloodstream. I guess his body has metabolized the rest of it in some way.

More Articles

View All
How does voter turnout in midterms compare to presidential elections? | Khan Academy
How does voter turnout in midterms compare to presidential elections? Traditionally, midterm elections have been years in which the voter turnout is much lower than a presidential election. Particularly in recent history, the American political scene has …
An Affordable 3D-Printed Arm
I’m actually gonna use my arm so I can high-five so many people, 106. You’re gonna high-five 106 people? Yeah. Aren’t you gonna get tired? No, because my robo-arm’s going to do all the work. Alex was born without a fully formed arm, a condition that…
What was the Gilded Age? | US History | Khan Academy
So what was the Gilded Age and why did it happen? Ah, the Gilded Age is this fascinating period from about 1870 to 1900. You can change the dates a little bit, but that’s… so we’re talking post-Civil War America, which becomes an industrial powerhouse. Th…
Culinary Destinations | Epcot Becoming Episode 4 | National Geographic
Okay, perfect. The food should have a story. Something you remember for years to come. This is delicious. The creations of the chefs here at EPCOT represent the connecting of different cultures around the world. More than 40 food and drink spots offer uni…
TROLL LIPS and more! IMG! #51
Violin skulls and the most popular social networks by country. It’s episode 51 of IMG! Our Sun is big, like really, really big. Take a look at this photo of the transit of Venus. Brady Haran pointed this out to me. Venus is pretty big. Almost the size of …
Probability of sample proportions example | Sampling distributions | AP Statistics | Khan Academy
We’re told suppose that 15% of the 1750 students at a school have experienced extreme levels of stress during the past month. A high school newspaper doesn’t know this figure, but they are curious what it is. So they decide to ask us a simple random sampl…