yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Diode graphical solution


4m read
·Nov 11, 2024

Now I want to use a diode in a circuit and we'll see how we, uh, solve circuits that include these nonlinear diodes in them. So I have a circuit here with a battery and a resistor and a diode here, and it's going to be a special kind; it's going to be an LED diode. So it's going to give off light. This is a kind of diode that's manufactured to generate photons of light when it has a current flowing through it in the forward direction. They're pretty cool, and you see them all the time in electronic components.

So we're going to figure out how to use an LED in a real simple little circuit. In our circuit here, we're going to have a resistor of 330 ohms, and we'll make this battery 3 volts, so it's like two AA cells. What we want to find out is how much current is going to flow around this circuit. Let me label this here; let me, let me label the voltages across our components. We'll have (V_D) which is this voltage here, and we'll have (V_R) which is the resistor voltage, and that's that voltage right there.

Now I'm going to show you a plot of the IV curve of our diode. You can see right here, around 7 volts, the current rises rapidly when there's 7 volts across the diode. Let's start out by analyzing this; let's start with the same tools that we always have, which is let's try to write some current laws for these two things.

So for the diode, we write a current law that looks like this: the current is equal to (I_S \times e^{\frac{qV_D}{kT}} - 1). So that's the IV characteristic for the diode where this is the voltage across the diode right there. The corresponding equation for the resistor is (I = \frac{V_R}{330 , \text{ohms}}). That's just Ohm's law for the resistor, and (I) in both cases is this (I) right here.

Now, if I wanted to, I could set these two expressions equal to each other and somehow solve for (V_D) and (V_R). But what we're going to do instead is we're going to solve this by graphing, by a graphical method. Here's a graph of the diode, and this is the (V_D) scale; this is the voltage across the diode, and this is (I) up here.

So what I want to do is plot the resistor curve on here as well. I want to plot the resistor IV curve on this same plot. Now, in this expression, I have (V_R) instead of (V_D). So let me see if I can work on (V_R) here. Let me try to figure out (V_R) in terms of (V_D).

So I can derive (V_R) as (3 , \text{volts} - V_D), and let's put this into this I expression here. The Ohm's law expression now becomes (I = \frac{3 - V_D}{330 , \text{ohms}}). Let's work on this a little more:

[
I = \frac{3}{330} - \frac{V_D}{330}
]

And this is starting to look like the equation of a line. Let me write this to recognize it as an equation of a line:

[
I = -\frac{V_D}{330} + \frac{3}{330}
]

So ( \frac{3}{330} ) is 9 milliamps. So this is the equation of a line and the slope is right here, which is (-\frac{1}{330}), and the (I) intercept is 9 milliamps.

So let's see if we can plot this line. This is actually called a load line; that's just a nickname for this kind of expression that you get when you have a resistor connected to a fixed power supply above, and the resistor is hanging down from it. You get this characteristic equation of a line that has a negative slope, which is really distinctive.

Let's see if we can plot this line. Now it's a line, so all we have to do is find two points that solve the line, and then we'll be able to draw the line. So if I set (V_D) equal to 0, then (I = 9 , \text{milliamps}). So here's (V_D) equal to 0 and it'll go through 9 milliamps. So that's one point on the line.

What else can I say? Set (I) to 0. I can set (I) equal to 0, which means I'm on the voltage axis. What I'm actually going to do is I'm just going to look at my circuit and figure this out in my head. Setting (I = 0) means there's no current in this resistor, which means there's no voltage drop across that resistor.

That means that this voltage here is the same as this voltage here, and I know the voltage here—the voltage here is 3 volts. So that means the voltage here is 3 volts, because I know the current is zero. So let's go over and put that point on our line. When (I) is zero, (V) is 3 volts, so there's another point on the line.

Now we have two points, and we can draw a line between them like that, and what we've drawn is the load line for this 330-ohm resistor. You remember back over here we said we could solve these two equations by setting the two (I)s equal to each other, and that's basically where do these two lines intersect.

They intersect right here; that's the solution to our problem. So this intersection point is the solution; it's where the resistor current and the diode current are the same, and that's that point there. Now I can just read off my answer right there: it's about 0.7 volts, and the current over here, if I read off the current just straight across there, it's about 6.8 milliamps of current.

So now we actually just solved our circuit using a graphical technique, and what that says is, here, let me erase this a bit to clean it up. Let me take out these two things here that was the resistor load line that we were talking about, and now for our solution, we have (I = 6.8 , \text{milliamps}) and (V_{D} = 0.7 , \text{volts}). So that's how you do a graphical solution with a diode.

More Articles

View All
How to light a match inside a balloon - Smarter Every Day 36 LASER MONTH
So what we’re gonna do for this experiment is we are going to take a balloon, a real big clear balloon, and we’ve got a match, and we roll the string up on the match. We’re gonna start blowing the balloon up just a little bit, and we’re gonna make it wher…
Enzyme reaction velocity and pH | Cellular energetics | AP Biology | Khan Academy
In this video, we’re going to talk about enzymes. In particular, we’re going to talk about the effect of pH on enzymes—how acidic or basic the environment is and how that affects enzyme activity. So just as a bit of review, enzymes are molecules that hel…
Her Parents Made the Ultimate Sacrifice for Democracy—She Continues the Fight | Short Film Showcase
[Music] In 1983 my father was elected president of [Applause] Nigeria. He came with a platform that said hope; farewell to poverty. [Applause] We will appoint several women, not just one, not just two, not just three, but several women into the governmen…
15 Signs You Are AVERAGE
Some of you were told you were special growing up, but somehow reality didn’t catch up with that promise, did it? Somehow something happened where all the expectations you had from life went out the door, and by the end of this video you’ll have a clear …
Natural Custodians: Indigenous Lessons in Reconnecting with Nature | National Geographic
The Arctic is warming up to four times faster than the rest of the world. Ice caps are melting and sea ice is retreating, changing the weather and disrupting marine life. To protect these polar ecosystems, we need to understand them. And no one knows the …
How he bought a Lamborghini Huracan: Chatting Real Estate with Bryan Casella
What’s up you guys? It’s Graham here. So if you guys watch any sort of real estate YouTube videos, I’d say like 99%, you’ve seen Brian Kinsella, which by the way, I think when you type in real estate in YouTube, Brian Kinsella is like one of the first res…