yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
Lecture 10 - Culture (Brian Chesky, Alfred Lin)
Set the stage with a few slides and some comments, but the main stage is going to be with Brian when he comes up and talks about how he built the Airbnb culture. So, you’re here. I’ve been following the presentations, and so now you know how to get starte…
Command and market economies | Basic economics concepts | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about different ways of structuring an economy. In particular, who owns what and how does an economy decide what to produce and who gets the output of that production. So, on one side, you have what’s known as a command…
Dividing polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy
What we’re going to do in this video is get some practice dividing expressions. So, what do I mean by that? So let’s say that I have the expression 6X + 12, and I want to figure out what that divided by, maybe I’ll write this in a different color: divided…
Crypto Will Go Back Up | Converge 2022
Bitcoin down, Twitter below 20,000. We have a slew of, uh, crypto CEOs that are resigning. Those are the signals right now. It feels pretty bad. Why are you bullish? What are the bullish signs that you’re seeing? [Music] [Applause] [Music] Kevin, you fu…
Chi-square statistic for hypothesis testing | AP Statistics | Khan Academy
Let’s say there’s some type of standardized exam where every question on the test has four choices: choice A, choice B, choice C, and choice D. The test makers assure folks that over many years, there’s an equal probability that the correct answer for any…
The Nurse Keeping Explorers Alive | Podcast | Overheard at National Geographic
Foreign. This is a National Geographic map of the world. We’re in a basement office at National Geographic headquarters, and Karen Berry is standing in front of a huge map that stretches from floor to ceiling. Like a military general, she points out explo…