yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
Thomas Hunt Morgan and fruit flies
Where we left off in the last video, we were in 1902-1903, and Mendelian genetics had been rediscovered at the turn of the century. Bovary and Sutton independently had proposed the chromosome theory, that the chromosomes were the location for where these …
Meet Jeff, a creator of AP Statistics on Khan Academy | AP Statistics | Khan Academy
I was a teacher for 10 years in Kazu Public Schools. They’re a midsize urban district in Southwest Michigan. In my first three years, I taught Algebra 1, Geometry, Algebra 2—the core math classes. But I also taught an introductory statistics course. Then,…
When Food Can Kill You: Coping With Severe Food Allergies | National Geographic
Morning. It is not a terminal illness that my child has, but it is an every day, every second, every moment, the unknown of every day. He could possibly die, and we have no clue when it’s gonna happen sometimes. But if we’re prepared, we’re continuing on …
Rare Dumbo Octopus Shows Off for Deep-sea Submersible | National Geographic
Oh oh oh oh! Look, we got a little octopus up in the comments. You get rewarded after all those sea pigs. All right, valet crew, here we go! All right, I’m gonna paint it with the lasers, and I’m gonna turn them off for some really good imaging. Yeah, ye…
Watch: Decomposing Dolphin Brings New Life to Seafloor | Expedition Raw
This common dolphin that just happened to wash up on the beach where Noah gave me a call said, “Hey, instead of putting in the dumpster, would you like to use this for your project?” It was the perfect opportunity. We’re going to try to better understand …
Guns in Space
Hey, Vsauce. Michael here. And what do you say we get outta here… to space and into an orbit? That way we could just float around and be free from the influence of gravity. Except not really. Astronauts orbiting around the Earth experience pretty much the…