yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
Safari Live - Day 272 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody and welcome to a stormy, blustery, windy Masai Mara. We’ve had a massive storm that has just blown…
15 Ways To Sound Smarter Than You Are
What if there is a way to make yourself sound not just smart, but truly captivating, even when you have absolutely nothing to say? Well, my friend, there is. This is how you sound smarter than you actually are. Welcome to Alux! In conversations, timing i…
Charlie Munger's 2023 Recession Prediction
Visits partly fraud and partly delusion; that’s a bad combination. I don’t like either fraud or delusion, and the delusion may be more extreme than the fraud. This is a very, very bad thing. When Charlie Munger talks, we all better listen. Munger is the …
THE FED JUST BAILED OUT THE STOCK MARKET
What’s up you guys, it’s Graham here. So, over the last few months, a lot has changed in the investment world. Interest rates have plunged to zero, trillions of dollars have been printed into our economy to help lift it back to life, toilet paper is now t…
Drew Houston - CEO and Founder of Dropbox | Entrepreneurship | Khan Academy
So, uh, excited to have Drew Hon here. Uh, you know, a very well-known figure amongst kind of our team out here. Um, and for those who are maybe watching this video later, uh, founder of Dropbox. How many, how many billions of people do you have using? I …
Definite integral of absolute value function | AP Calculus AB | Khan Academy
So we have F of x being equal to the absolute value of x + 2, and we want to evaluate the definite integral from 4 to 0 of f of x dx. And like always, pause this video and see if you could work through this. Now, when you first do this, you might stumble…