yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
Warren Buffett: How Smart Investors Easily Identify Terrible Stocks
In the end the better mouse trap usually wins but but the people with the second or third best mous trap will will try to keep that from happening. I the ones you name I don’t know anything about I mean I know what they do but I don’t I don’t know they sp…
Predator prey cycle | Ecology | Khan Academy
What I want to do in this video is think about how different populations that share the same ecosystem can interact with each other and actually provide a feedback loop on each other. There are many cases of this, but the most cited general example is the…
Proof: parallel lines have the same slope | High School Math | Khan Academy
What I want to do in this video is prove that parallel lines have the same slope. So let’s draw some parallel lines here. So that’s one line, and then let me draw another line that is parallel to that. I’m claiming that these are parallel lines. Now I’m …
Watch a Masterpiece Emerge from a Solid Block of Stone | Short Film Showcase
I always find that you have to be a bit mad to become a stone carver. I mean, this isn’t the Renaissance anymore. Stone isn’t a primary building material anymore. Why, why would you go into an industry? Why would you go into a profession that is expensive…
Suspicious driver prompts officer to search a car for narcotics | To Catch a Smuggler
OFFICER: There’s tampering here. Refer to secondary. IGLESIAS: This vehicle came from primary and right now we’re gonna do an inspection on the vehicle. The passenger is coming from Reynosa where he lives. He’s going to work. The subject right now is cla…
Why Democracy Is Mathematically Impossible
Democracy might be mathematically impossible. (serious music) This isn’t a value judgment, a comment about human nature, nor a statement about how rare and unstable democratic societies have been in the history of civilization. Our current attempt at demo…