yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
10 AMAZING Flash Games - DONG!
Vsauce! Today I’ve got more creativity for you, but not the kind you have to buy or wait for. These are 10 things you can do online now. Guys, Dawn Sign Minister 9 recommended a great game where you have to jump to avoid holes in the floor. Of course, ju…
What’s Worth More: $100 SAVED or $200 EARNED?
What’s up you guys? It’s Graham here. So, here’s an interesting question for you to think of: What’s worth more money, the hundred dollars that you save or the hundred dollars that you earn? If you had the option to pick one or the other, which one will …
Estimating decimal multiplication
Let’s now get some practice estimating multiplying with decimals. So first, here we have 7.8 times 307 is approximately equal to what? When you see the squiggly equal sign, that means approximately equal to one. What? So pause this video and see if you ca…
Homeroom with Sal & Arne Duncan - Wednesday, October 14
Hi everyone! Welcome to the homeroom live stream. Uh, we have a really exciting conversation today with Secretary Arne Duncan, uh, Secretary of Education under Barack Obama. Uh, but before we get into that, I will give my standard of announcements. Uh, f…
Plastic Pollution: How Humans are Turning the World into Plastic
When the gods granted king Midas one wish, he wished that everything he touched would turn to gold. Midas was delighted. Trees, rocks, buildings— all gold. But soon he found in horror that his food turned into gold as well. When he hugged his daughter to …
Align | Vocabulary | Khan Academy
Hey there, wordsmiths! This video is about the word “align.” A line, this word has two definitions. The first is to support, ally, or associate with someone, and the second definition is to put things in a straight line. That’s its literal definition; it …