yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why a sausage can do what your gloves cannot - Charles Wallace and Sajan Saini


3m read
·Nov 8, 2024

In 2010, South Korea experienced a particularly cold winter. People couldn't activate their smartphones while wearing gloves, so they began wielding snack sausages— causing one company to see a 40% rise in sausage sales. So, what could sausages do that gloves couldn’t? In other words, how do touchscreens actually work?

In 1965, the first ever touchscreen was invented to help British air traffic controllers efficiently update flight plans. However, the technology was too unwieldy and expensive for widespread use. Over the following decades, engineers further developed this technology and experimented with alternative kinds of touchscreens. Soon, resistive touchscreens dominated the market. But then, in 2007, Apple released the first iPhone. It was a breakthrough, yet it functioned using the same principle as the first touchscreen: capacitance.

Nowadays, capacitive and resistive touchscreens are two of the most common types. Both use an external input to complete their electric circuits. In conductive materials, electrons flow around atoms, forming an electric current. In contrast to insulators, the electrons in conductors are weakly bound and flow easily. A resistive touchscreen has two layers. The top is a clear, flexible material— usually plastic— while the bottom is something rigid, like glass. These layers are coated with a conductive substance and separated by a thin gap.

When something pushes hard enough, the layers connect, completing the electric circuit. This causes a change in voltage that the machine’s software reacts to. Resistive touchscreens can be a little unresponsive, but they're generally cheap and durable, so they're favored for industrial or mass use. A vast majority of the touchscreens produced in 2007 were resistive. But in the years following the iPhone’s release, most became capacitive.

Individual models vary, but smartphone touchscreens today typically consist of a protective, insulating glass exterior and an LCD screen at the bottom that produces the images you see. Between the glass exterior and the LCD screen are several sheets. One is lined with rows of a transparent, conductive material that carry an alternating electric current. A thin insulating layer separates these conductive lines from others that are arranged as columns. One on top of the other, the lines form a grid. The points where they intersect are called nodes.

The phone's battery draws electrons along the first layer of lines, and some electrons accumulate at every node, creating a small electric field. These screens are called capacitive touchscreens because the nodes act like capacitors by storing charge. They’re generally easier to use than resistive touchscreens because they interact directly with your finger without the application of force. Your body is a great conductor and is constantly transmitting electric currents. Why? Because about 60% of you is water.

Now, while chemically pure water is an insulator, most water is impure. The water inside you is loaded with ions— atoms or molecules that have a net electrical charge. So when you click on an app, your finger functions like a third electrical line. It interacts with the existing electric field, which induces a weak electric current that travels through your finger and eventually back into the phone. This changes the amount of charge at the affected nodes. And voltage measurements along the second layer of lines tell the phone’s microprocessor which part of the screen is being touched.

However, if you try using a smartphone while your hands are wet or gloved, you'll probably have some trouble. Both interrupt the electrical connection between your finger and phone. If water is splashed across the screen, it might trigger many underlying nodes, and the phone could act like you’ve touched it in multiple places at once. On the other hand, gloves are insulators, so the charge has nowhere to go.

Meanwhile, objects that conduct electricity about as well as your finger— like banana peels and certain processed meats— can all activate the screen— knowledge that can come in clutch when you’re in a pickle.

More Articles

View All
Tech startups live and die by their speed of shipping software.
I was the single non-technical person on a four-person co-founding team at Justin TV and Twitch. And like, I’ll just make it plain: without my three other co-founders, none of that happens. Ideas are a dime a dozen. I think that more business people need…
15 Things To Do If You Get Rich All Of A Sudden
Although it is incredibly rare, sometimes it happens that people get a massive influx of capital. The most common way is by inheriting a fortune from a deceased relative. The others are often different forms of gambling, like winning the lottery or someth…
Magic Tricks with Larry Wilmore | StarTalk
Anytime I interview somebody, no matter who they are, I want to know if they have some hidden geek credentials. Almost everybody does; they just don’t admit to it in any other interview because they don’t get any street cred for doing so. But on Star Talk…
Lions 360° | National Geographic
It is not often a mother has to lead her cub away from the pride, but it happens. This is Gibson, who has already lost a brother. His mother, knowing what might happen if they return, is always on the lookout. There’s a thread out there. This is Paula. H…
Nigerians Fight to Protect the World's Most Trafficked Mammal | National Geographic
[Music] It may surprise you that the most illegally trafficked mammal in the world is not the elephant or the rhinoceros. It is a small, gentle, scaled mammal called a pangolin. Very few people have heard of pangolins and fewer still have seen them in the…
The Ancient Orchestra | Podcast | Overheard at National Geographic
So the first thing I want to do here, Amy, is just play you something. Okay? Out of the blue. [Music] Okay, so that is not Chewbacca, right? No? Just okay, let’s clear that up right now. You like the oldies, right? Yeah, but not that old. All these people…