yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding inverse functions: radical | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

  • [Voiceover] So we're told that h of x is equal to the negative cube root of three x minus six plus 12. And what we wanna figure out is, what is the inverse of h? So what is... What is h inverse of x going to be equal to? And like always, pause the video and see if you could figure it out.

Well, in previous videos, we've emphasized that what an inverse does is... A function will map from a domain to a range and you can think of the inverse as mapping back from that point in the range to where you started from. So one way to think about it is, we want to come up with an expression that unwinds whatever this does.

So if we say that y, if we say that y is equal to h of x, or we could say that y is equal to the negative of the cube root of three x minus six plus 12. This gives us our y. And you can think of y as a member of the range. A member of the range in terms of what our input is. In terms of a member of the domain. We wanna go the other way around, so what we could do is we could try to solve for x. If we solve for x, we're gonna have some expression that's a function of y. We're gonna have that being equal to x. And so that would be the inverse mapping.

Another way you could do that, is you could just swap x and y and then solve for y. But that's a little bit less intuitive that this is actually the inverse. So actually, let's just solve for x here. So the first thing we might want to do is, let's isolate this cube root on, let's say to the right hand side. So let's subtract 12 from both sides. And we would get y minus 12 is equal to the cube root of, it's actually the negative cube root. Don't wanna lose track of that.

Negative cube root of three x minus six, and then we subtracted 12 from both sides so that 12 is now, that 12 is now gone. And now what we would do, what we could multiply both sides by negative one, that might get rid of this negative here. So we multiply both sides by negative one. And then we multiply this times a negative one. On the left hand side, well that's the same thing as 12 minus y.

And on the right hand side, we're gonna get the cube root of three x minus six. And now, and this is gonna be a little bit algebraically hairy. We wanna cube both sides. So let's do that. So let's cube both sides. And actually it doesn't get that algebraically hairy because I don't actually have to figure what this, I don't have to expand it, I could just leave it as 12 minus y cubed.

And so if we cube both sides on the left hand side, we're just left with 12 minus y cubed. And on the right hand side, well you take the cube of the cube root, you're just gonna be left with what you originally had under the cube root sign, I guess you could say. And now we wanna solve for x, let's add six to both sides. So we're gonna get 12 minus y cubed plus six is equal to three x.

Now we could divide both sides by 3 and we're all done. Divide both sides by three and we get... We get x... Is equal to 12 minus y to the third power plus six over three. And so this, if you have a member of the, one way to think about it, if you have a member of the range y, this is going to map it back to the x that would have gotten you to that member of the range.

So this is the inverse function so we could write, h inverse of y is equal to this business. 12 minus y cubed plus six over three. And like we said in previous videos, this choice of calling y the input, well it could be anything, we could call that star. We could say h inverse of star and we're just naming our input star is equal to 12 minus star cubed plus six over three.

Or if we just want to call the input x, we could just say h inverse of x and once again, this is just what we're calling the input, is equal to 12 minus y to the third plus six over three. Might be a little bit confusing because now, in theory x could be considered a member of the range and we're mapping back to a member of the domain.

But either way, we can call the input function to a function partially anything. But there you have it, that is our inverse function, that essentially unwinds what our original function does.

More Articles

View All
Irregular plural nouns | foreign plurals | The parts of speech | Grammar | Khan Academy
Hello Garans. Today we’re talking about another kind of irregular plural noun, and that is the foreign plural. Those are words that are borrowed into English from some other language, words like fungus, or cactus, or thesis, or criteria. These words come …
Two Bites for the Pin Wheel | Wicked Tuna: Outer Banks
Yo yo, mother load, huh? Mother load! Oh yeah, the tun of God down here is the same tun of God I’ve been praying to up in Gloucester for years and years. I’m just hoping he shines a little light on me and starts putting some paychecks on my deck. We’re i…
Second partial derivative test
In the last video, we took a look at this function ( f(x, y) = x^4 - 4x^2 + y^2 ), which has the graph that you’re looking at on the left. We looked for all of the points where the gradient is equal to zero, which basically means both partial derivatives …
Protecting a Flamingo Paradise | Incredible Animal Journeys | National Geographic
When we set out to film this series, we knew that we’d face some challenges along the way, but nothing compares to what the wildlife is up against. Animal journeys formed over thousands of years are in real danger. [Music] Physical barriers, disorientat…
THE GAME OF LIFE and other DONGs!
Hey, Vsauce. Michael here with some things you can do online now, guys. Let’s start the DONGs off in the right hands with misternicehands.com. You can pull his finger. Wordle.net analyzes text, like on a web site, and generates a free word cloud with fun…
How The Economic Machine Works by Ray Dalio
How the economic machine works, in 30 minutes. The economy works like a simple machine. But many people don’t understand it — or they don’t agree on how it works — and this has led to a lot of needless economic suffering. I feel a deep sense of responsibi…