yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
Elon Musk : How to Build the Future
Today we have Elon Musk. Eon, thank you for joining us. Thanks for having me. Right, so we want to spend the time today talking about your view of the future and what people should work on. So, to start off, could you tell us you famously said when you…
Cumulative geometric probability (greater than a value) | AP Statistics | Khan Academy
Amelia registers vehicles for the Department of Transportation. Sports utility vehicles, also known as SUVs, make up 12% of the vehicles she registers. Let V be the number of vehicles Amelia registers in a day until she first registers an SUV. Assume that…
Heating curve for water | Thermodynamics | AP Chemistry | Khan Academy
Let’s look at the heating curve for water. A heating curve has temperature on the y-axis, in this case, we have it in degrees Celsius, and heat added on the x-axis; let’s say it’s in kilojoules. Let’s say we have 18.0 grams of ice, and our goal is to cal…
Introduction to electron configurations | AP Chemistry | Khan Academy
In a previous video, we’ve introduced ourselves to the idea of an orbital. Electrons don’t just orbit a nucleus the way that a planet might orbit a star, but really, in order to describe where an electron is at any given point in time, we’re really thinki…
Encountering an Anaconda | Primal Survivor: Escape the Amazon | National Geographic
So how far are you coming from? I come from south. Okay, all the way south? Yeah. Coming and going to? Heading north. Heading north? Okay. Okay. Yeah, we are rounding up these horses. Oh yeah? Yeah, my horses had strayed from this wapan Roundup. T…
Is It Possible to Run a Marathon in Under 2 Hours? | Breaking2
Ever since 490 BC, when Thea deputies ran the 26 miles from Marathon to Athens to declare victory over the Persians and promptly died, humans have been asking themselves, “How fast can we run this distance?” It’s a question that has motivated us for thou…