yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
Help support Khan Academy
Hi everyone, Sal Khan here from Khan Academy, and I just wanted to remind you that we are a not-for-profit, and we can only exist through donations from folks like yourself. Our goal is for everyone to reach their potential. Potential is everywhere; unfo…
Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told quadrilateral A was dilated by a scale factor of 2⁄3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we’ll do i…
The Critter Fixers Meet Baby Animals in Disney's Animal Kingdom | ourHOME | National Geographic
[Music] I’m Dr. Rard Hodes and I’m Dr. Terence Ferguson, but you may know us better as the Creative Fixers. Our job has us taking care of all kinds of animals, but this Earth Month, we’re traveling to Disney Animal Kingdom to meet some adorable additions …
A Visit From The Hudson Bay Company | Barkskins
[door opening] [exhales] Francis, there is an Englishman waiting for you. These tables are no good. No good at all. He is from the Hudson Bay Company. I gave Lafarge exact measurements. A table that will not tilt or list. That is all I ask for, a proper t…
North Dakota Is Not Just “Oil & Gas” l Winner State Tour
[Music] And we’re coming off of an exciting announcement to you with that investment in the IV in gr fors. Can you tell me a little bit broadly speaking with the Wonder fund? What’s the long-term goal for that within our state? Is it getting outside capit…
Homeroom with Sal & Margaret Spellings - Wednesday, November 3
Hi everyone, welcome to the homeroom live stream. Sal here from Khan Academy. Uh, we have a very exciting guest today, Margaret Spellings, former Secretary of Education of the United States and CEO of Texas 2036. But before we get to that, I will give my…