yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
What The Most Carefree Philosopher Can Teach Us | ZHUANGZI
Many centuries ago, a curious Taoist philosopher named Zhuangzi sat by the riverbank, absorbed in the gentle flow of the water, as his fishing rod lay nearby. Unexpectedly, two vice-chancellors appeared before him, having been dispatched by the Prince of …
Worked example: separable differential equation (with taking log of both sides) | Khan Academy
Let’s say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential…
Mark Zuckerberg : How to Build the Future
Welcome to How to Build the Future Today. Our guest is Mark Zuckerberg. Uh, Mark, you have built one of the most influential companies in the history of the world, so we are especially excited that you are here. I’m not sure where to go from there. Um, wh…
Michael Rubin White Party 2024 | Mr. Wonderful Watches
These are the insane watches worn at Michael Rubin’s White Party. I’m here for the White Party. I got a huge CA. Obviously, I’m in white, and I got to tell you, I look spectacular! This is ridiculous, but I have no watches on. What about the puzzle on th…
Adding and subtracting fractions with negatives | 7th grade | Khan Academy
Let’s say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together. All right, now let’s work on this together. You might be tempted to deal wi…
The Solar System -- our home in space
The solar system, our home in space. We live in a peaceful part of the Milky Way. Our home is the solar system, a four and a half billion year old formation that races around the galactic center at 200,000 kilometers per hour and circles it once every 250…