yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
This is how much YouTube paid me for my 1,000,000 viewed video...
Ah, YouTube! The place where dreams are made and crushed. The place where your monthly income is essentially left up to the gods and whatever the YouTube gods deem you are worthy of for that month. Well, you just have to live with that. But seriously, You…
Cecily Meets an Energy Insider | Years of Living Dangerously
Hi, how are you? Thank you for meeting me. I was right away very, very excited to be a part of this. We just shot an interview at Joe Allen’s restaurant, which is an old Broadway landmark, with Cesal Strong from Saturday Night Live. She was talking to an …
The 10th and 14th Amendments in relation to federal and state powers
What we’re going to do in this video is talk a little bit more about federal powers versus state powers. As we’ve mentioned in other videos, this is a very relevant topic because even today you’ll have Supreme Court decisions being decided based on citing…
Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy
What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We’re going to assume we know one thing ahead of time: we’re going to assume we know that the limit as ( x ) approaches ( 0 )…
Absolute minima & maxima (entire domain) | AP Calculus AB | Khan Academy
So we have the function ( G(x) = x^2 \cdot \ln(x) ), and what I want to do in this video is see if we can figure out the absolute extrema for ( G(x) ). Are there ( x ) values where ( G ) takes on an absolute maximum value or an absolute minimum value? Som…
Equivalent ratios in similar shapes | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that quadrilateral ABCD is similar to quadrilateral STUV. So what we’re going to do in this video, this isn’t a question; this is just a statement right over here. But what we’re going to do is think about what does similarity mean? What does i…