yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
How This Prawn Can Kill You - Allergies Explained
If you’re a fan of our work, you probably value rigor and humility in research and are willing to change your mind based on new information. You might also appreciate the same principles applied to important questions like: how can my donation make the bi…
Why Do Good Stocks Still Crash? (Mohnish Pabrai on buying Seritage Growth Properties)
And instantly, the stock went to six to nine dollars a share. So that was the price at which somebody else was willing to buy that seat, me being one of them. And, uh, I own, uh, one eighth, little more than one eighth of all the seats in that theater, so…
Photographing the Wild Wolves of Yellowstone | Exposure
In Rogard Kipling’s The Jungle Book, he has a quote that says, “For the strength of the pack is the wolf, and the strength of the wolf is the pack.” Yellowstone lives and breathes wolves. In the last 20 years, I wanted to photograph them and bring that to…
Example of one sides unbounded limits
We’re asked to select the correct description. It looks like all the descriptions deal with what is the limit of f of x as we approach six from either the right-hand side or from the left-hand side. So let’s think about that. First, let me just do the le…
HOW TO BUILD VALUE AS AN INVESTOR | Dennis Miller
She believed in getting paid to wait. She would never own anything that didn’t send a check to her each month or each quarter, and she would live off those distributions. But if it didn’t pay you money, she didn’t get it; she didn’t consider it an investm…
Lecture 9 - How to Raise Money (Marc Andreessen, Ron Conway, Parker Conrad)
Um, but I want to start with a question for Mark and Ron, which is by far the number one question. Probably be a link answer: what do you guys decide to invest in—a founder or a company? Neither of you: no, no, no, no, you first. Um, well, we have a sli…