yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
Homeroom with Sal & Kristen DiCerbo
Okay standby. I realize I didn’t put the links to both of these. Hi everyone, welcome to our daily homeroom live stream! Sal here from Khan Academy. For those of you who are wondering what this is, this is our way of staying in touch. We started doing th…
Syria, Israel, Ukraine - A New Decade of War
10 years ago, in 2014, we asked if war was over. Based on long-term trends in the last century, it seemed violent conflict was on the decline and the world more peaceful than ever. Our video began with the Russian invasion of Ukraine and the war between H…
Inside Chichén Itzá - 360 | National Geographic
Janeshia was an amazing city of the Maya. What we see now is the civic and religious part of it, so we can tell these buildings were sacred. El Castillo, or Temple of Kukulkan, is an amazing building based on astronomical and mathematical science. I’ve be…
The Real Reason Flames Don't Have Shadows
Uh, why don’t flames have shadows? Like, I mean, hello, it’s kind of freaky. But it has everything to do with what a hydrocarbon flame is. When you look at a candle flame, the part you can see is not a gas, and it’s not a plasma, believe it or not. The p…
It's Over: China’s ENTIRE Economy Is About To Collapse
Tens of thousands of them have begun withholding payments for unfinished projects. A massive protest over frozen bank deposits. The international community and the financial markets will also feel the pain. “What’s up, guys? It’s Graham here. So I recent…
Steal Sam Altman's Genius Note-Taking Method (Pocket Notebook Power!)
Hey, guys, today’s video is going to be something a little bit fun and different. Actually, a few weeks ago, I was watching a video with David Perell. I think I pronounced that correctly. And he does a lot of videos on how people write and interviews a lo…