yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
Vsauce Live Stream!
[Music] [Applause] [Music] Hey, Vsauce! Michael, Cameron, Jake here and we are very glad that you are here. What’s going on? Well, it’s our very first Vsauce YouTube livestream! They said it couldn’t be done, but actually, the technology has been possible…
Reasoning with systems of equations | Systems of equations | Algebra I | Khan Academy
In a previous video, we talked about the notion of equivalence with equations. Equivalence is just this notion that there’s different ways of writing what are equivalent statements in algebra. I could give some simple examples. I could say 2x equals 10 or…
Safari Live - Day 253 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Well now, there are ways to start on an average safari, and then there are magical ways to start on a live safari, and an e…
What The Most Carefree Philosopher Can Teach Us | ZHUANGZI
Many centuries ago, a curious Taoist philosopher named Zhuangzi sat by the riverbank, absorbed in the gentle flow of the water, as his fishing rod lay nearby. Unexpectedly, two vice-chancellors appeared before him, having been dispatched by the Prince of …
Positive and negative intervals of polynomials | Polynomial graphs | Algebra 2 | Khan Academy
Let’s say that we have the polynomial p of x, and when expressed in factored form, it is (x + 2)(2x - 3)(x - 4). What we’re going to do in this video is use our knowledge of the roots of this polynomial to think about intervals where this polynomial would…
A Park Reborn: Close Encounter With a Lion | Nat Geo Live
( Intro music ) Bob Poole: One day this guy showed up. He was like nothing I’d ever seen before. We had no idea where he came from, but he was wild. You can tell a lot about a lion when you look in its face. What’s its life been like? The first time I fi…