yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out.

All right, now this might look foreign to you. You might say, "Well, I've never taken a derivative of a cube root before." But as we'll see, we can actually just apply the power rule here because this function can be rewritten.

So, f of x can be rewritten as -4. The cube root of x is the same thing as x to the 1/3 power. Now, it might be a little bit clearer that we can apply the power rule. We could take this 1/3, multiply it by this coefficient -4, so we have -4 times 1/3.

Now we have times x to the 1/3, and we just decrement that exponent. So, that's a different shade of blue to the 1/3 minus one power. This is the derivative. So, f prime of x is equal to that.

Now we just have to simplify. This is equal to -4/3 times x to the -2/3 power. If we want to evaluate f prime of 8, f prime of 8 is equal to -4/3 times 8 to the -2/3 power.

Well, that's the same thing as -4/3 times 8 to the 1/3 and then raised to the -2 power. I'm just using exponent properties here. If this looks completely unfamiliar, how I got from that to that, I encourage you to review exponent properties on Khan Academy.

Well, 8 to the 1/3, that is just 2. So, this is just 2, and then 2 to the -2 power. Remember, let me just take some steps here; it's a good review. This is equal to -4/3 times 2. The -2 is the same thing as 1 over 2 squared.

These two things are equivalent. 1 over 2 squared is the same thing as 2 to the -2. So, this is 1 over 4, and this is going to simplify to -4/12, which is equal to -1/3. And we are done.

More Articles

View All
Peter Lynch's Tips to Prepare for a Stock Market Crash
What you learn from history is the market goes down. It goes down a lot. The math is simple. There’s been 93 years, a century. This is easy to do. The market’s had 50 declines of 10% or more. So, 50 declines in 93 years, about once every two years. The m…
He’s Watching This Glacier Melt Before His Eyes | Short Film Showcase
For [Music] [Music], my name is Rick Brown. I’m the owner of Venture 60 North Adventure Center in Seward, Alaska. I’ve been guiding here since the early 90s. I’ve lived here permanently since 2003 and have been guiding in the glaciers all that time. Norm…
Why Does Your Company Deserve More Money? by Michael Seibel
Why does your company deserve more money? Sometimes the hardest conversation I have to have with the founder is when they’ve spent their 1 to 2 million dollar angel round but haven’t found product market fit. Unfortunately, I have to ask them a very unfor…
Inflection points from graphs of function & derivatives | AP Calculus AB | Khan Academy
What we’re going to do in this video is try to get a graphical appreciation for inflection points, which we also cover in some detail in other videos. So the first thing to appreciate is an inflection point is a point on our graph where our slope goes fr…
Fox News Cancelled Me
What’s up you guys? It’s Grahe here. So, I got cancelled by Fox News and because of that, I’m making this video as my way of sharing the information that they didn’t allow me to talk about. What could it be, you ask? Well, a few weeks ago, I received se…
Measuring Mangroves | Explorers in the Field
(Gentle music) - I remember the first time that I snorkeled. We jumped in the water and we saw many colorful fish. And it was unbelievable. So since then, I wanted to repeat that experience again. It wasn’t until I turned 24 when I had the opportunity to …