yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rotations: description to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that Julia rotated triangle ABC counterclockwise about the origin by 180° to create triangle A'B'C'. Write a rule that describes this transformation. So why don't you pause this video and see if you can do that on your own before we do this together?

All right, now let's do this together. And to help us visualize this, let's graph some triangle ABC. I'm just going to make up the points because they didn't tell us what the points are, but we can see what happens to those points when we rotate it counterclockwise about the origin by 180°.

So let's say that this is point A right over here at (2,2). So that's A right over there. I'm going to write these down, so A is at (2,2). Let's say that I have B that is at point (3,4). Actually, let me make it a little different because I want them; it might be confusing if both the x and the y-coordinate are the same. So let me put A right over here, so A is at the point (3,2).

Let's put B at the point, oh, I don't know, let's put it right over here at (1,4). So it's at (1,4), and then let's put C at the point right over here at (6,5). C is at (6,5). We could clearly draw a triangle out of these if we want. I could draw it just so we can visualize it as a triangle.

Now, let's imagine what rotating counterclockwise about the origin by 180° would look like. So this is the origin, not a surprise, and we are going to rotate 180°. So, we are going to rotate. If we rotate that much, that would be 90°, and so we're going to go all the way around like that.

Or actually, let me just go point by point; that might make it a little bit easier. So if I start with point A, and if I were to go 180 degrees about the origin, I would be right over here. That is A'. Now where is— and you can see that that's 180°. We haven't changed our distance from the origin.

Now, what are the coordinates of A'? A' is at the coordinates (-3,-2). Some of you might already be seeing a pattern here. Now let's think about where B' is going to be. So if this is where B is, if you rotate at 180 degrees counterclockwise about the origin, it's going to be right over here.

It's going really essentially the same distance on the other side of the origin, so that's going to be B' right over there, which is at the point (-1,-4). And then last but not least, let's think about where C' is going to be. So if you were to take this point and go all the way 180° about the origin, we would see that right over here.

If we were to just extend that line, so this is where C' is. I know this is getting a little bit messy now, but C' is at (-6,-5), and we clearly see a pattern. Whatever our x's and y's are in our pre-image for A, B, and C, in our image at the new point that we've rotated into, it's just the negative of each of those.

So the rule I would say is for any (x, y), our rotation is going to result in a point in the image that's going to be (-x, -y), and we are done.

More Articles

View All
Taking the Pulse of Our Planet | National Geographic
A lot of our mapping and a lot of our work is about discovery. Still, it’s still that way, but it’s equal now to measurements that will help people make better decisions at a scale that is really important. That scale might be the state of California scal…
Equations with rational expressions | Mathematics III | High School Math | Khan Academy
So we have a nice little equation here dealing with rational expressions, and I encourage you to pause the video and see if you can figure out what values of x satisfy this equation. All right, let’s work through this together. The first thing I’d like t…
Simulation showing value of t statistic | Confidence intervals | AP Statistics | Khan Academy
In a previous video, we talked about trying to estimate a population mean with a sample mean and then constructing a confidence interval about that sample mean. We talked about different scenarios where we could use a z table plus the true population stan…
Why Ocean Exploration is so Important
The ocean is obviously our biggest and most important natural resource. Consider that it’s twice the size of all continents combined, and it’s almost totally unexplored. It’s thrilling to be able to explore it. So, I’m on a mission to make you excited, m…
Charlie Munger loads up on Alibaba Stock!
Holy smokes, guys! This is pretty crazy. Charlie Munger has just released the 13F4 for the Daily Journal Corp, and he is buying more Alibaba. Honestly, I shouldn’t be surprised by this, but I am. The reason is because he first bought Alibaba back in Q1 20…
Worked example: finding a Riemann sum using a table | AP Calculus AB | Khan Academy
Imagine we’re asked to approximate the area between the x-axis and the graph of f from x equals 1 to x equals 10 using a right Riemann sum with three equal subdivisions. To do that, we are given a table of values for f. I encourage you to pause the video …