yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Perfect square factorization intro | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're going to learn to recognize and factor perfect square polynomials in this video. So, for example, let's say I have the polynomial x² + 6x + 9. If someone asks you, "Hey, can you factor this into two binomials?" Well, using techniques we learned in other videos, you say, "Okay, I need to find two numbers whose product is nine and whose sum is six."

So, I encourage you to think of, to pause this video and say, "Well, what two numbers can I add up to six, and if I take their product, I get nine?" Well, 9 only has so many factors, really: 1, 3, and 9. And 1 + 9 does not equal 6.

But 3 × 3 equals 9, and 3 + 3 does equal 6. So we can factor this as (x + 3)(x + 3), which is of course the same thing as (x + 3)².

Now, what was it about this expression that made us recognize, or maybe now we will start to recognize it, as being a perfect square? Well, I have, of course, some variable that is being squared, which we need. I have some perfect square as the constant, and that whatever is being squared there—I have two times that as the coefficient on this first-degree term here.

Here, let's see if that is generally true, and I'll switch up the variables just to show that we can. So, let's say that I have a² + 14a + 49. A few interesting things are happening here.

Alright, I have my variable squared. I have a perfect square constant term that is 7² right over here. And my coefficient on my first-degree term here is 2 times the thing that’s being squared; that is, 2 × 7. Or you could say it's 7 + 7.

So, you can immediately say, "Okay, if I want to factor this, this is going to be (a + 7)²." You can verify that by multiplying out by figuring out what (a + 7)² is. Sometimes when you're first learning, it's like, "Hey, isn't that just a² + 7a?"

No! Remember, this is the same thing as (a + 7)(a + 7). You can calculate this by using the FOIL technique. I don't like that so much because you're not thinking mathematically about what's happening, really. You just have to do the distributive property twice here.

First, you can multiply (a + 7)(a) so (a + 7)(a) and then multiply (a + 7)(7) so plus (a + 7)(7). This is going to be a² + 7a plus now we distribute this 7, plus 7a plus 49.

So now you see where that 14a came from—it's from the 7a plus the 7a. You see where the a² came from, and you see where the 49 came from. You can speak of this in more general terms if I wanted to.

If I wanted to just take the expression (A + B)², that's just (A + B)(A + B). We do exactly what we did just here, but here I'm just doing it in very general terms with A or B. You can think of A as either a constant number or even a variable.

So this is going to be, if we distribute this, it's going to be A + B times A plus A + B times B. This is going to be A². Now I'm just doing the distributive property again.

A² + 2Ab + B². So this is A² + 2Ab + B². This is going to be the general form. So if A is the variable (which was X or a in this case), then it's just going to be whatever squared in the constant term is going to be 2 times that times the variable.

I want to show that there's some variation that you can entertain here. So, if you were to see 25 + 10x + x² and someone wanted you to factor that, you could say, "Look, this right here is a perfect square. It's 5². I have the variable squared right over here, and then this coefficient on our first-degree term is 2 × 5."

So you might immediately recognize this as (5 + x)². Now, of course, you could just rewrite this polynomial as x² + 10x + 25, in which case you might say, "Okay, variable squared, some number squared, 5²; two times that number is the coefficient here."

So that's going to be (x + 5)². And that's good because these two things are absolutely equivalent.

More Articles

View All
WIN Videogames BY KISSING??!! And 10 More Awesome FLASH GAMES.
[Music] Yesterday, everyone was talking about a new game controlled by kissy. One person has a magnet stuck on their tongue, and the position and speed of their tongue controls the direction and speed of a bowling ball. But until and if that game hits sto…
The 10 WORST Investing Mistakes to Make (Investing For Beginners)
One of the trends we’ve seen over the past few years is there’s been a lot of new investors entering the market. In Robin Hood’s most recent quarterly data, they showed that in the past 12 months, they’ve doubled the amount of funded accounts. In their S1…
Don't Start a Blog, Start a Cult - Mr. Money Mustache
The first question I had for you, not on the paper, is if I want to start a cult-like Mustache Ian’s. What are your pro tips? That’s a good question, and if I had prepared, I would have brought my little talk that I gave a few years ago at a blogger conf…
The most important skill for improving your life
[Music] Despite all the self-improvement content that exists on YouTube or online in general, most people already know exactly what they need to do to improve their lives. Pretty much every day, we have at least one thing that we know we need to do. If we…
ALL MY ACCOUNTS WERE HACKED *How this happened*
So guys, this is some super like serious stuff. I mean, it’s really scary when you start to think about it, but all of my accounts have been hacked. Someone was able to get access to my YouTube channel, my social media accounts, all of my email accounts, …
Levitating Barbecue! Electromagnetic Induction
Let’s switch it on. Let’s see what it does. Through this coil of thick wire, we’re about to pass a huge alternating electric current. On top is a 1 kg aluminum plate. So we hear that noise. What’s that noise? It’s the vibration of the plate because it’s v…