yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Perfect square factorization intro | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're going to learn to recognize and factor perfect square polynomials in this video. So, for example, let's say I have the polynomial x² + 6x + 9. If someone asks you, "Hey, can you factor this into two binomials?" Well, using techniques we learned in other videos, you say, "Okay, I need to find two numbers whose product is nine and whose sum is six."

So, I encourage you to think of, to pause this video and say, "Well, what two numbers can I add up to six, and if I take their product, I get nine?" Well, 9 only has so many factors, really: 1, 3, and 9. And 1 + 9 does not equal 6.

But 3 × 3 equals 9, and 3 + 3 does equal 6. So we can factor this as (x + 3)(x + 3), which is of course the same thing as (x + 3)².

Now, what was it about this expression that made us recognize, or maybe now we will start to recognize it, as being a perfect square? Well, I have, of course, some variable that is being squared, which we need. I have some perfect square as the constant, and that whatever is being squared there—I have two times that as the coefficient on this first-degree term here.

Here, let's see if that is generally true, and I'll switch up the variables just to show that we can. So, let's say that I have a² + 14a + 49. A few interesting things are happening here.

Alright, I have my variable squared. I have a perfect square constant term that is 7² right over here. And my coefficient on my first-degree term here is 2 times the thing that’s being squared; that is, 2 × 7. Or you could say it's 7 + 7.

So, you can immediately say, "Okay, if I want to factor this, this is going to be (a + 7)²." You can verify that by multiplying out by figuring out what (a + 7)² is. Sometimes when you're first learning, it's like, "Hey, isn't that just a² + 7a?"

No! Remember, this is the same thing as (a + 7)(a + 7). You can calculate this by using the FOIL technique. I don't like that so much because you're not thinking mathematically about what's happening, really. You just have to do the distributive property twice here.

First, you can multiply (a + 7)(a) so (a + 7)(a) and then multiply (a + 7)(7) so plus (a + 7)(7). This is going to be a² + 7a plus now we distribute this 7, plus 7a plus 49.

So now you see where that 14a came from—it's from the 7a plus the 7a. You see where the a² came from, and you see where the 49 came from. You can speak of this in more general terms if I wanted to.

If I wanted to just take the expression (A + B)², that's just (A + B)(A + B). We do exactly what we did just here, but here I'm just doing it in very general terms with A or B. You can think of A as either a constant number or even a variable.

So this is going to be, if we distribute this, it's going to be A + B times A plus A + B times B. This is going to be A². Now I'm just doing the distributive property again.

A² + 2Ab + B². So this is A² + 2Ab + B². This is going to be the general form. So if A is the variable (which was X or a in this case), then it's just going to be whatever squared in the constant term is going to be 2 times that times the variable.

I want to show that there's some variation that you can entertain here. So, if you were to see 25 + 10x + x² and someone wanted you to factor that, you could say, "Look, this right here is a perfect square. It's 5². I have the variable squared right over here, and then this coefficient on our first-degree term is 2 × 5."

So you might immediately recognize this as (5 + x)². Now, of course, you could just rewrite this polynomial as x² + 10x + 25, in which case you might say, "Okay, variable squared, some number squared, 5²; two times that number is the coefficient here."

So that's going to be (x + 5)². And that's good because these two things are absolutely equivalent.

More Articles

View All
Spider vs Penis (Priapism) - Smarter Every Day 98
Alright, so this video may not be appropriate for kids, and it is, uh… It’s disturbing on several different levels. Especially if you’re a man… So, you know, on Smarter Every Day, I try to keep everything very intelligent and respectful, but this video is…
Day In The Life of a Millennial Millionaire
What’s up guys, it’s Graham here! So this is a video that I’ve been meaning to make for over two years now because so many of you guys have asked me to film a day in the lifestyle vlog. Well, I guess now is the perfect time to film that video because with…
Will Mars Be a World Without Laws? | MARS
Law works because it’s effectively backed up by a state, and that kind of breaks down in space a little bit. The whole legality of who owns what is going to fill volumes. There are international treaties that relate to space. The UN Outer Space Treaty 196…
How to sell private jets to billionaires...
This is a very hectic day in the life of a corporate jet broker. I came into the office at 7:30. I was about to get ready for an important meeting I had at 10:00 when I got a call from George Ganopoulos from Lux Aviation. “You’re kidding! Client, we just…
dining in a super fancy restaurant with my mom VLOG✨
I love fine dining not because it’s tasty and expensive to prove people that I’m a woman of culture. I love it because you can see the chef’s passion for making that dish, giving everything they have and being proud of it. I appreciate the craftsmanship i…
Subtracting 3-digit numbers (no regrouping) | 2nd grade | Khan Academy
We have the number 357. So the three is in the hundreds place. So that represents three hundreds: one hundred, two hundred, three hundreds. Three hundreds right over here, that’s what this three represents, ‘cause it’s in the hundreds place. Let me write …