yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rule of 70 to approximate population doubling time | AP Environmental Science | Khan Academy


2m read
·Nov 10, 2024

When we're dealing with population growth rates, an interesting question is how long would it take for a given rate for the population to double. So we're going to think about doubling time now.

If you were to actually calculate it precisely, mathematically, it gets a little bit mathy. You need to use a little bit of logarithms and you'll probably need a calculator. But I did that here in the spreadsheet by calculating the exact doubling time.

So this is saying that if a population is growing at one percent a year, it's going to take almost 70 years for that population to double. But if that population is growing at 5 percent a year, then it's going to take a little over 14 years for that population to double. If the population is growing at 10 percent, we know mathematically it's going to take a little bit over seven years for that population to double.

Now, I was able to calculate this, as I just mentioned, using a little bit of fancy math. But what we see in this next column is there's actually a pretty easy way to approximate doubling time, and this is known as the rule of 70. The rule of 70 is used in a lot of different areas, a lot of different subjects. People in finance would use it because, once again, you're thinking about things growing at a certain percent every year. But you can also use it for things like population growth rates.

So what we see with the rule of 70—and let me just write that down, rule of 70—is that you can approximate the doubling time by taking the number 70 and dividing it by the—not actually the percentage but just the number of the percentage. So for example, this right over here is 70 divided by this one here, which is equal to 10.

And notice this 70 is pretty close to 69.7. If you wanted to figure out, or you wanted to approximate, the doubling time if the population is growing at 7 percent a year, well, what you would say is, all right, what is 70 divided by 7? Well, that is equal to 10. So this would be your approximation, and if you were doing it in a mathematically precise way, it would be 10.2.

So if you're taking, say, an AP Environmental Science course and they're asking you for how long it takes for something to double, let's say a population is growing 7 percent a year, they're probably expecting you to use the rule of 70.

So let's say that we have a population that is growing at 14 percent a year, and that would actually be a very huge growth rate. What I want you to do is pause this video and approximate how long would it take for that population to double.

All right, now let's work through this together. So as I mentioned, we're approximating; we don't have to calculate the exact doubling time. So for approximating it, it's going to be 70 divided by the rate of growth.

So in this situation, this is going to be 70 divided by 14, which is equal to 5. So if a population is going at 14 percent, it'll take it roughly 5 years to double.

More Articles

View All
How to avoid phishing attempts. However it’s spelled, it’s bad news
Hi, everyone. Sal Khan here from Khan Academy, and I’m here with Grace Hoyt, head of Account Security Partnerships at Google to talk a little bit about online safety. Welcome, Grace. Thanks for having me, Sal. So let’s just start at the basics. What is …
Marginal utllity free response example | APⓇ Microeconomics | Khan Academy
We are told that Teresa consumes both bagels and toy cars, and they tell us that the table above shows Teresa’s marginal utility from bagels and toy cars. The first question is, what is her total utility from purchasing three toy cars? So pause this video…
How to Build a 4K Editing Computer (More cores are not always better) - Smarter Every Day 202
Hey, it’s me Destin, welcome back to SmarterEveryDay. It’s coming up on 1 a.m. I have a problem in my life. It keeps me up at night, keeps me away from my family, which that’s the one that really bothers me. It’s rendering, look at this. This particular f…
What the Fahrenheit?!
As an Australian Canadian, the Fahrenheit temperature scale has always seemed a bit arbitrary to me. I mean, why does water freeze at 32 degrees? Why that integer? And what exactly does 0 represent? According to many sources, the Fahrenheit scale was defi…
Why and how to save | Budgeting & saving | Financial Literacy | Khan Academy
So I’m guessing that you already have a sense that saving money is a good idea. It’s good for a rainy day; that’s why we have an emergency fund. There might be unexpected interruptions to your income or unexpected costs that happen from your car breaking …
How I sell private jets to billionaires!
This is a day in the life of a private jet broker. I get into the office at six a.m., three hours before my team. I like getting in early to catch up on work and establish my plan of action for the rest of the day. I then call my clients in Asia, do email…