yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rule of 70 to approximate population doubling time | AP Environmental Science | Khan Academy


2m read
·Nov 10, 2024

When we're dealing with population growth rates, an interesting question is how long would it take for a given rate for the population to double. So we're going to think about doubling time now.

If you were to actually calculate it precisely, mathematically, it gets a little bit mathy. You need to use a little bit of logarithms and you'll probably need a calculator. But I did that here in the spreadsheet by calculating the exact doubling time.

So this is saying that if a population is growing at one percent a year, it's going to take almost 70 years for that population to double. But if that population is growing at 5 percent a year, then it's going to take a little over 14 years for that population to double. If the population is growing at 10 percent, we know mathematically it's going to take a little bit over seven years for that population to double.

Now, I was able to calculate this, as I just mentioned, using a little bit of fancy math. But what we see in this next column is there's actually a pretty easy way to approximate doubling time, and this is known as the rule of 70. The rule of 70 is used in a lot of different areas, a lot of different subjects. People in finance would use it because, once again, you're thinking about things growing at a certain percent every year. But you can also use it for things like population growth rates.

So what we see with the rule of 70—and let me just write that down, rule of 70—is that you can approximate the doubling time by taking the number 70 and dividing it by the—not actually the percentage but just the number of the percentage. So for example, this right over here is 70 divided by this one here, which is equal to 10.

And notice this 70 is pretty close to 69.7. If you wanted to figure out, or you wanted to approximate, the doubling time if the population is growing at 7 percent a year, well, what you would say is, all right, what is 70 divided by 7? Well, that is equal to 10. So this would be your approximation, and if you were doing it in a mathematically precise way, it would be 10.2.

So if you're taking, say, an AP Environmental Science course and they're asking you for how long it takes for something to double, let's say a population is growing 7 percent a year, they're probably expecting you to use the rule of 70.

So let's say that we have a population that is growing at 14 percent a year, and that would actually be a very huge growth rate. What I want you to do is pause this video and approximate how long would it take for that population to double.

All right, now let's work through this together. So as I mentioned, we're approximating; we don't have to calculate the exact doubling time. So for approximating it, it's going to be 70 divided by the rate of growth.

So in this situation, this is going to be 70 divided by 14, which is equal to 5. So if a population is going at 14 percent, it'll take it roughly 5 years to double.

More Articles

View All
Second partial derivative test intuition
Hey everyone! So, in the last video, I introduced this thing called the second partial derivative test. If you have some kind of multi-variable function, or really just a two-variable function, is what this applies to—something that’s f of X, Y—and it out…
15 Things Emotionally Intelligent People Don't Do
Hey there, relaxer! We’re starting off today with a little bit of an exercise. Think of a loved one. What do you feel now? Think of a difficult situation. Did your emotions change? If the answer to this question was yes, well, you’re at least a little bi…
Warren Buffett's Timeless Investing Wisdom – 1988 Interview
To meet the wizard of Omaha, Warren Buffett, next on Adam Smith’s Money World. He doesn’t generally do interviews, but I called on him recently to get some of the wisdom and apherisms of Warren Buffett on the record. It is characteristic of Warren that he…
I Bought a Rain Forest, Part 1 | Nat Geo Live
I went on a journey and I went all over the Amazon to try and find out the truth about the Amazon. This idea of these nasty people destroying the Amazon, they’re not. They are just people trying to make a living. And what I saw was this endless poverty tr…
The Paradox of an Infinite Universe
Is the universe infinite? Does it have an edge? And if so, what would you see if you went there? Today we know that the universe had a beginning 14 billion years ago and that it’s been expanding ever since. But something that’s expanding should also have…
Solving the Water Problem | Breakthrough
Our lifestyles are very thirsty, and it’s not just the water that comes out of the tap at home. You know, if we think about our daily lifestyle, everything we use, and where and buy and eat takes water to make, and sometimes really a surprising amount. It…