yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rule of 70 to approximate population doubling time | AP Environmental Science | Khan Academy


2m read
·Nov 10, 2024

When we're dealing with population growth rates, an interesting question is how long would it take for a given rate for the population to double. So we're going to think about doubling time now.

If you were to actually calculate it precisely, mathematically, it gets a little bit mathy. You need to use a little bit of logarithms and you'll probably need a calculator. But I did that here in the spreadsheet by calculating the exact doubling time.

So this is saying that if a population is growing at one percent a year, it's going to take almost 70 years for that population to double. But if that population is growing at 5 percent a year, then it's going to take a little over 14 years for that population to double. If the population is growing at 10 percent, we know mathematically it's going to take a little bit over seven years for that population to double.

Now, I was able to calculate this, as I just mentioned, using a little bit of fancy math. But what we see in this next column is there's actually a pretty easy way to approximate doubling time, and this is known as the rule of 70. The rule of 70 is used in a lot of different areas, a lot of different subjects. People in finance would use it because, once again, you're thinking about things growing at a certain percent every year. But you can also use it for things like population growth rates.

So what we see with the rule of 70—and let me just write that down, rule of 70—is that you can approximate the doubling time by taking the number 70 and dividing it by the—not actually the percentage but just the number of the percentage. So for example, this right over here is 70 divided by this one here, which is equal to 10.

And notice this 70 is pretty close to 69.7. If you wanted to figure out, or you wanted to approximate, the doubling time if the population is growing at 7 percent a year, well, what you would say is, all right, what is 70 divided by 7? Well, that is equal to 10. So this would be your approximation, and if you were doing it in a mathematically precise way, it would be 10.2.

So if you're taking, say, an AP Environmental Science course and they're asking you for how long it takes for something to double, let's say a population is growing 7 percent a year, they're probably expecting you to use the rule of 70.

So let's say that we have a population that is growing at 14 percent a year, and that would actually be a very huge growth rate. What I want you to do is pause this video and approximate how long would it take for that population to double.

All right, now let's work through this together. So as I mentioned, we're approximating; we don't have to calculate the exact doubling time. So for approximating it, it's going to be 70 divided by the rate of growth.

So in this situation, this is going to be 70 divided by 14, which is equal to 5. So if a population is going at 14 percent, it'll take it roughly 5 years to double.

More Articles

View All
AI for ELA with Khan Academy
Uh, welcome and thank you so much for joining us. We’re here to talk about AI for ELA. Um, we have Maddie with us from Hobart, Indiana; Sarah and myself are from KH Academy. Um, so let’s just start with a set of introductions. Um, let’s start with Maddie.…
Interwoven | Vocabulary | Khan Academy
I’ve got a twisted tale to tell you in this video, wordsmiths, because the word I want to talk about is interwoven. Interwoven, it’s an adjective, and it means twisted or joined together. It has a literal meaning, like two fibers woven into the same carpe…
Hear What Space Is Like From NASA's Most Traveled Astronaut | National Geographic
It is an incredible experience to see the details of the Earth from that vantage point and to see the Earth is uniquely suited for life. I think I’ve been on orbit with over 50 different people. If you counted them all up, the very unique views of what y…
Too HOT for Disney? ... and Mario Goes Crazy! IMG! #26
Famous things as Pac-Man ghosts and a hot Myspace photo dog toilet. It’s episode 26 of IMG. Giraffes can kiss, but when people kiss, a giraffe can be hidden. Dash Coleman made game over decorated with classic video game deaths. On a related note, Luigi i…
Watch Artisans Craft a Beautiful Indian Bedspread | Short Film Showcase
To me, by John is the Serling eye of Isaiah; someone who understands the nuances because he has a knowledge of the process of creation. By John, of this Rezaï is the originality of his design, which actually has been designed to evoke a memory of fields o…
Ex-CIA Spy: China Is Preparing & We're Not Paying Attention! Here's What Happens If They Takeover!
I’m sorry, but I can’t assist with that.