yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Shape properties after a sequence of transformations


3m read
·Nov 11, 2024

In past videos, we've thought about whether segment lengths or angle measures are preserved with a transformation. What we're now going to think about is what is preserved with a sequence of transformations, and in particular, we're going to think about angle measure, angle measure, and segment lengths.

So if you're transforming some type of a shape, segment segment lengths. So let's look at this first example. They say a sequence of transformations is described below. So we first do a translation, then we do a reflection over a horizontal line pq, then we do a vertical stretch about pq.

What is this going to do? Is this going to preserve angle measures, and is this going to preserve segment lengths? Well, a translation is a rigid transformation, and so that will preserve both angle measures and segment lengths. So after that, angle measures and segment lengths are still going to be the same.

A reflection over a horizontal line pq, well, a reflection is also a rigid transformation, and so we will continue to preserve angle measure and segment lengths. Then they say a vertical stretch about pq. Well, let's just think about what a vertical stretch does.

So if I have some triangle right over here, if I have some triangle that looks like this, it says triangle ABC. And if you were to do a vertical stretch, what's going to happen? Well, let's just imagine that we take these sides and we stretch them out so that we now have a is over here or a prime I should say is over there. Let's say that b prime is now over here. This isn't going to be exact.

Well, what just happened to my triangle? Well, the measure of angle C is for sure going to be different now, and my segment lengths are for sure going to be different now. a prime c prime is going to be different than ac in terms of segment length. So a vertical stretch, if we're talking about a stretch in general, this is going to preserve neither. So neither preserved, neither preserved.

So in general, if you're doing rigid transformation after rigid transformation, you're going to preserve both angles and segment lengths. But if you throw a stretch in there, then all bets are off; you're not going to preserve either of them.

Let's do another example. A sequence of transformations is described below, and so they give three transformations. So pause this video and think about whether angle measures, segment lengths, or well, either both, or neither, or only one of them be preserved.

All right, so first we have a rotation about a point P. That's a rigid transformation; it would preserve both segment lengths and angle measures. Then you have a translation, which is also a rigid transformation, and so that would preserve both again. Then we have a rotation about point P, so once again another rigid transformation. So in this situation, everything is going to be preserved.

So both angle measure, angle measure, and segment length are going to be preserved in this example. Let's do one more example. So here once again we have a sequence of transformations, so pause this video again and see if you can figure out whether angle measures, segment lengths, both, or neither are going to be preserved.

So the first transformation is a dilation. So dilation is a non-rigid transformation, so segment lengths not preserved; segment lengths not preserved. And we've seen this in multiple videos already, but in a dilation, angles are preserved; angles preserved. So already we've lost our segment lengths, but we still got our angles.

Then we have a rotation about another point Q, so this is a rigid transformation; it would preserve both. But we've already lost our segment lengths, but angles are going to continue to be preserved. And then finally, a reflection, which is still a rigid transformation, and it would preserve both.

But once again, our segment lengths got lost through the dilation, but we will continue to preserve the angles. So in this series of, after these three transformations, the only thing that's going to be preserved are going to be your angles.

More Articles

View All
Example of vector magnitude from initial and terminal points
What we have depicted here we could call vector w, and you can see from this diagram that its initial point is right over here. It’s the point negative seven, comma, positive three, and its terminal point is this point right over here, which is the point …
What Could Trigger a Shark Attack? | Rogue Shark
Across the Whit Sundays, hundreds of baited cameras are deployed and listening stations fixed as scientists race to understand why these previously safe waters have turned deadly. As the footage comes in, one big clue emerges: the poor visibility. What w…
World's Longest Home Run (The "Mad Batter" Machine) - Smarter Every Day 230
Oh dear me. I’ll let you know! (machine whirring) Ready? Oh my goodness. (bat snaps) (laughs) (Smarter Every Day Intro music) The major league baseball home run distance record is around 575 to 580 something feet, depending on where you get your data. T…
Want to Get SUPER Rich? Sacrifice These 17.
When you see millionaires and billionaires in the world’s wealthiest people, you have to be 100% sure that they reached this financial status as a result of sacrifices. Every one of them gave up a lot to get to where they are today. Sacrifice is what sets…
Creativity break: How does creativity play a role in your everyday life? | Algebra 1 | Khan Academy
Creativity is really important for me as, like a future job. As a part of my future job, I would want to, um, do something that changes, and then I can use problem-solving skills constantly. Um, I feel like when I make animations or when I figure out how …
This world is a mess… and Nietzsche saw it coming.
The infamous philosopher Friedrich Nietzsche famously proclaimed, “God is dead. God remains dead. And we have killed him,” a statement that would become one of his most memorable quotes. These words point to the religious decline that existed during Nietz…