yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Shape properties after a sequence of transformations


3m read
·Nov 11, 2024

In past videos, we've thought about whether segment lengths or angle measures are preserved with a transformation. What we're now going to think about is what is preserved with a sequence of transformations, and in particular, we're going to think about angle measure, angle measure, and segment lengths.

So if you're transforming some type of a shape, segment segment lengths. So let's look at this first example. They say a sequence of transformations is described below. So we first do a translation, then we do a reflection over a horizontal line pq, then we do a vertical stretch about pq.

What is this going to do? Is this going to preserve angle measures, and is this going to preserve segment lengths? Well, a translation is a rigid transformation, and so that will preserve both angle measures and segment lengths. So after that, angle measures and segment lengths are still going to be the same.

A reflection over a horizontal line pq, well, a reflection is also a rigid transformation, and so we will continue to preserve angle measure and segment lengths. Then they say a vertical stretch about pq. Well, let's just think about what a vertical stretch does.

So if I have some triangle right over here, if I have some triangle that looks like this, it says triangle ABC. And if you were to do a vertical stretch, what's going to happen? Well, let's just imagine that we take these sides and we stretch them out so that we now have a is over here or a prime I should say is over there. Let's say that b prime is now over here. This isn't going to be exact.

Well, what just happened to my triangle? Well, the measure of angle C is for sure going to be different now, and my segment lengths are for sure going to be different now. a prime c prime is going to be different than ac in terms of segment length. So a vertical stretch, if we're talking about a stretch in general, this is going to preserve neither. So neither preserved, neither preserved.

So in general, if you're doing rigid transformation after rigid transformation, you're going to preserve both angles and segment lengths. But if you throw a stretch in there, then all bets are off; you're not going to preserve either of them.

Let's do another example. A sequence of transformations is described below, and so they give three transformations. So pause this video and think about whether angle measures, segment lengths, or well, either both, or neither, or only one of them be preserved.

All right, so first we have a rotation about a point P. That's a rigid transformation; it would preserve both segment lengths and angle measures. Then you have a translation, which is also a rigid transformation, and so that would preserve both again. Then we have a rotation about point P, so once again another rigid transformation. So in this situation, everything is going to be preserved.

So both angle measure, angle measure, and segment length are going to be preserved in this example. Let's do one more example. So here once again we have a sequence of transformations, so pause this video again and see if you can figure out whether angle measures, segment lengths, both, or neither are going to be preserved.

So the first transformation is a dilation. So dilation is a non-rigid transformation, so segment lengths not preserved; segment lengths not preserved. And we've seen this in multiple videos already, but in a dilation, angles are preserved; angles preserved. So already we've lost our segment lengths, but we still got our angles.

Then we have a rotation about another point Q, so this is a rigid transformation; it would preserve both. But we've already lost our segment lengths, but angles are going to continue to be preserved. And then finally, a reflection, which is still a rigid transformation, and it would preserve both.

But once again, our segment lengths got lost through the dilation, but we will continue to preserve the angles. So in this series of, after these three transformations, the only thing that's going to be preserved are going to be your angles.

More Articles

View All
Where No Grid Has Gone Before | Breakthrough
We don’t go to them and say, hey, we’ve got electricity. We’re going to bring it to you. We’re going to bring you modern entertainment that electricity provides, no. They’re coming to us and saying, we’re so far off the grid, we don’t have any electricity…
Sal Khan and Francis Ford Coppola fireside chat
All right, so very exciting, uh, we’re here at Khan Academy with the team, and we have some students from Khan Lab School as well, uh, with, uh, the I’d say legendary Francis Ford Coppola, uh, most known for film making. Uh, I, you know, obviously The Go…
Julia Hartz at Female Founders Conference 2014
Our next speaker is Julia Hearts. She’s the founder of Eventbrite, which is such a big deal. I know you’ve all used Eventbrite, and I’ve known Julia for years. Actually, we kind of started our companies around the same time, and I’ve wanted for years to p…
The Elves of Iceland | Explorer
Many a culture is home to a mythical beast, an elusive creature that thrives in the imagination, if not verifiable reality. The Scots have Nessie monstrously hiding in its Highland Loch. Nepal has the abominably unverified Yeti. Even New Jersey has its ow…
Weak base–strong acid titrations | Acids and bases | AP Chemistry | Khan Academy
Ammonia is an example of a weak base, and hydrochloric acid is an example of a strong acid. If we’re doing a weak base-strong acid titration, that means that ammonia is the analyte, the substance we’re analyzing, and we’re titrating ammonia with hydrochlo…
Preparing for Breakup | Life Below Zero
This is kind of an exciting time of year for me. My blood gets pumping a little bit ‘cause it’s breakup, and breakup to me is like New Year’s to most people. So I start my calendar year the day the river breaks up, and looking at the river, breakup is goi…