yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Shape properties after a sequence of transformations


3m read
·Nov 11, 2024

In past videos, we've thought about whether segment lengths or angle measures are preserved with a transformation. What we're now going to think about is what is preserved with a sequence of transformations, and in particular, we're going to think about angle measure, angle measure, and segment lengths.

So if you're transforming some type of a shape, segment segment lengths. So let's look at this first example. They say a sequence of transformations is described below. So we first do a translation, then we do a reflection over a horizontal line pq, then we do a vertical stretch about pq.

What is this going to do? Is this going to preserve angle measures, and is this going to preserve segment lengths? Well, a translation is a rigid transformation, and so that will preserve both angle measures and segment lengths. So after that, angle measures and segment lengths are still going to be the same.

A reflection over a horizontal line pq, well, a reflection is also a rigid transformation, and so we will continue to preserve angle measure and segment lengths. Then they say a vertical stretch about pq. Well, let's just think about what a vertical stretch does.

So if I have some triangle right over here, if I have some triangle that looks like this, it says triangle ABC. And if you were to do a vertical stretch, what's going to happen? Well, let's just imagine that we take these sides and we stretch them out so that we now have a is over here or a prime I should say is over there. Let's say that b prime is now over here. This isn't going to be exact.

Well, what just happened to my triangle? Well, the measure of angle C is for sure going to be different now, and my segment lengths are for sure going to be different now. a prime c prime is going to be different than ac in terms of segment length. So a vertical stretch, if we're talking about a stretch in general, this is going to preserve neither. So neither preserved, neither preserved.

So in general, if you're doing rigid transformation after rigid transformation, you're going to preserve both angles and segment lengths. But if you throw a stretch in there, then all bets are off; you're not going to preserve either of them.

Let's do another example. A sequence of transformations is described below, and so they give three transformations. So pause this video and think about whether angle measures, segment lengths, or well, either both, or neither, or only one of them be preserved.

All right, so first we have a rotation about a point P. That's a rigid transformation; it would preserve both segment lengths and angle measures. Then you have a translation, which is also a rigid transformation, and so that would preserve both again. Then we have a rotation about point P, so once again another rigid transformation. So in this situation, everything is going to be preserved.

So both angle measure, angle measure, and segment length are going to be preserved in this example. Let's do one more example. So here once again we have a sequence of transformations, so pause this video again and see if you can figure out whether angle measures, segment lengths, both, or neither are going to be preserved.

So the first transformation is a dilation. So dilation is a non-rigid transformation, so segment lengths not preserved; segment lengths not preserved. And we've seen this in multiple videos already, but in a dilation, angles are preserved; angles preserved. So already we've lost our segment lengths, but we still got our angles.

Then we have a rotation about another point Q, so this is a rigid transformation; it would preserve both. But we've already lost our segment lengths, but angles are going to continue to be preserved. And then finally, a reflection, which is still a rigid transformation, and it would preserve both.

But once again, our segment lengths got lost through the dilation, but we will continue to preserve the angles. So in this series of, after these three transformations, the only thing that's going to be preserved are going to be your angles.

More Articles

View All
The mole and Avogadro's number | Moles and molar mass | High school chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of average atomic mass, which we began to realize could be a very useful way of thinking about a mass at an atomic level or at a molecular level. But what we’re going to do in this video is connect …
My Tips for Dealing with Uncertainty Like What the U.S. is Facing Today
But what can the individual do? And just to summarize, what can the collective do to stop or slow the decline that clearly, you know, you can measure has occurred? First, be financially strong. Have a good income and balance sheet. Think about how many m…
What I wish I knew as a Teenager
What’s up you guys? It’s Graham here. So, all right, here we go. This topic has been requested a lot lately. So when you ask, you shall receive. Here’s exactly what I wish I knew as a teenager. From all my videos, I really feel like this one is especially…
Outlasting the Enemy in Shok Valley | No Man Left Behind
On October 2nd of 2008, we received the mission to go conduct an operation in the northern province of Nurse T in Afghanistan. The mission was to conduct a raid on a high-value target. The plan was to infiltrate from the bottom of the valley and work our …
How to catch a Dwarf Planet -- Triton MM#3
The 14 moons of Neptune are a strange bunch. Most of them are small, potato-shaped pieces of ice and rock. Some are so far away from Neptune that they need 29 years to circle Neptune once. Almost all of them are asteroids trapped by Neptune’s gravity. 99…
Who Am I? | The Philosophy of Alan Watts
Who am I? Am I the mind? Am I the body that contains the mind? Am I a descendant of an alien race that, long ago, set foot on Earth? Am I created by God? The English philosopher, writer, and speaker Alan Watts believed that the most important question a h…