yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing circles from features | Mathematics II | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're asked to graph the circle which is centered at (3, -2) and has a radius of five units. I got this exercise off of the Con Academy "Graph a Circle According to Its Features" exercise. It's a pretty neat little widget here because what I can do is I can take this dot and I can move it around to redefine the center of the circle.

So it's centered at (3, -2), so X is 3 and Y is -2. So that's the center. It has to have a radius of five. The way it's drawn right now, it has a radius of one. The distance between the center and the actual circle—the points that define the circle—right now it's one. I need to make this radius equal to five.

So, let's see if I take that. So now the radius is equal to two, three, four, and five. There you go, centered at (3, -2), radius of five. Notice, go from the center to the actual circle; it's five, no matter where you go.

Let's do one more of these: graph the circle which is centered at (-4, 1) and which has the point (0, 4) on it. So, once again, let's drag the center. So it's going to be -4; X is -4, Y is 1. So that's the center, and it has the point (0, 4) on it.

So, X is 0, Y is 4. So I have to drag—I have to increase the radius of the circle. Let's see, whoops! Nope, I want to make sure I don't change the center. I want to increase the radius of the circle until it includes this point right over here, (0, 4).

So I’m not there quite yet. There you go, I am now including the point (0, 4). And if we're curious what the radius is, we could just go along the x-axis. X = -4 is the x-coordinate for the center, and we see that this point—that this is (4, 1) and we see that (1, 1) is actually on the circle.

So the distance here is—you go four and another one, it's five. So this has a radius of five. But either way, we did what they asked us to do.

More Articles

View All
How can a text have two or more main ideas? | Reading | Khan Academy
Hello readers. Today, I want to begin with a brief aside about physics. Unless you’re like a quantum particle or something, it’s not possible to be in two places at once. Nor is it possible to travel in two directions at once. Right? If I’m on a train fro…
The #USConstitution and founding of the presidency
How exactly did the founders of the United States first decide on how to choose the first president? Hi, I’m Leah from KH Academy. We’re celebrating this President’s Day by taking a look at how the US presidency is shaped in the US Constitution. There a…
7 things that (quickly) cured my procrastination
Today we’re gonna talk about a bunch of methods that I use to stop procrastinating. These are methods that I’ve developed over the past couple of years, and also methods that I’ve heavily borrowed from other people, completely ripping them off, and now I’…
Calculating internal energy and work example | Chemistry | Khan Academy
In this video, we’re going to do an example problem where we calculate internal energy and also calculate pressure-volume work. So we know the external pressure is 1.01 * 10^5 Pascals, and our system is some balloon. Let’s say it’s a balloon of argon gas.…
1,074 MPH BASEBALL vs. 1 Gallon of Mayonnaise - Smarter Every Day 264
foreign [Music] This is a supersonic baseball cannon. We built it because it’s awesome and it can make baseballs go supersonic. What have we done? Look at it! We initially just wanted to see if we could make a baseball go past the speed of sound, and we…
Charlie Munger: How to Invest Small Amounts of Money
Guess what! I just came across a long lost clip of Charlie Munger explaining the three things he would do to generate 50% annual returns investing small amounts of money. This clip looks like it was shot on an iPhone 4, but it is Munger at his absolute be…