yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing circles from features | Mathematics II | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're asked to graph the circle which is centered at (3, -2) and has a radius of five units. I got this exercise off of the Con Academy "Graph a Circle According to Its Features" exercise. It's a pretty neat little widget here because what I can do is I can take this dot and I can move it around to redefine the center of the circle.

So it's centered at (3, -2), so X is 3 and Y is -2. So that's the center. It has to have a radius of five. The way it's drawn right now, it has a radius of one. The distance between the center and the actual circle—the points that define the circle—right now it's one. I need to make this radius equal to five.

So, let's see if I take that. So now the radius is equal to two, three, four, and five. There you go, centered at (3, -2), radius of five. Notice, go from the center to the actual circle; it's five, no matter where you go.

Let's do one more of these: graph the circle which is centered at (-4, 1) and which has the point (0, 4) on it. So, once again, let's drag the center. So it's going to be -4; X is -4, Y is 1. So that's the center, and it has the point (0, 4) on it.

So, X is 0, Y is 4. So I have to drag—I have to increase the radius of the circle. Let's see, whoops! Nope, I want to make sure I don't change the center. I want to increase the radius of the circle until it includes this point right over here, (0, 4).

So I’m not there quite yet. There you go, I am now including the point (0, 4). And if we're curious what the radius is, we could just go along the x-axis. X = -4 is the x-coordinate for the center, and we see that this point—that this is (4, 1) and we see that (1, 1) is actually on the circle.

So the distance here is—you go four and another one, it's five. So this has a radius of five. But either way, we did what they asked us to do.

More Articles

View All
Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy
Let’s say that we have a line. I’m drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will even…
Partial derivative of a parametric surface, part 2
Hello, hello again! So in the last video, I started talking about how you interpret the partial derivative of a parametric surface function, right? Of a function that has a two-variable input and a three-variable vector-valued output. We typically visual…
Jack Bogle: Beware of This One Mistake 99% of Investors Make
At least start off. I mean, I’d say start off an index fund period. And for five years, don’t do anything else and then look around and see what’s happened in the five years. See how it felt when the market dropped fifty percent. See how it felt when it c…
Searching for the Himalayas' Ghost Cats | Podcast | Overheard at National Geographic
What you got? Do you see this? This is what we have been looking for. This is a fresh scene. Oh wow, man! Look at that! It’s quite a fresh track of a snow leopard. How can you tell? Oh, you see these toes and the paw? You see the contours here? They have…
Kevin O'Leary REACTS To Graham Stephan's $10 MILLION DOLLAR Investment Portfolio
A lot of people don’t understand how debt can put you out of business if things go wrong. Imagine being in your 40s and being wiped out, having to go bankrupt. So, I want you to react to something. Sure. I have my entire portfolio—worth a little bit over…
A Park Reborn: Bringing Wildlife Back | Nat Geo Live
( intro music ) Bob Poole: Gorongosa National Park sits right in the middle of Mozambique. In 1964, a long war for independence broke out against Portugal. And that was followed by an even longer civil war that lasted until 1992. The armies fed off the w…