yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Node voltage method (step 5) | Circuit analysis | Electrical engineering | Khan Academy


3m read
·Nov 11, 2024

And now we're down to solving this circuit. What I want to do now is put in the component values and solve this specific circuit. Let me move the screen up again. We'll leave the list of steps up there so we can see them. Let's go to work on this equation now. We have a little bit of algebra and we can plug in values where we need to. We can plug in 15 volts for D1, and for R1 we can plug in 4,000 ohms.

We can put in for V2. V2 is still unknown, and that's divided by 4K in this expression here. We still have V2 unknown over 2K. And is, let's put is over on the other side. Is was 3 milliamps. Let's just keep working at this now. V2 * 1 over 4K + 1 over 2K equals 3 milliamps. Oh, get my minus signs right. Minus sign over here.

Let's bring the constant term over to this side, so this is 15 volts divided by 4K. And continuing over here we have minus V2. Let's combine those two resistor terms, so it's going to be 1 + 2 over 4K equals 3 milliamps. And 15 volts divided by 4K is 3.75 minus 3.75 milliamps.

Moving on, minus V2 equals minus 0.75 milliamps times 4K over 3. Let's get rid of the two minus signs; we don't need those anymore. And V2 equals D dump dump one volt. That's good! We solved it. We solved our for our two voltages. We have one one here and we have one over here, and we can check off the last step.

So that's our first application of the node voltage method. I want to show you one more thing that is a powerful part of this technique. Let me quickly sketch the schematic again. So this was our schematic and we assigned node voltages. We assigned node voltages here V1 and V2, and we made this our reference node.

One of the things we did not do as part of the node voltage method, we did not use KVL to write equations around these loops. One of the features of the node voltage method is that the KVL equations, because we're using node voltages, the KVL equations are automatically satisfied.

And I'll show you why. I want to put one more label on here, which is the element voltage. We'll call this VR1; that's the element voltage across here. The element voltage here is just V2, so in this case for R2, V2 is the element voltage and the node voltage at the same time. VR1 is an element voltage.

And now we're going to write KVL starting from this point and going around the loop in this direction. What we have is, let's get all our labels on here, the loop voltages. We start with a rise of plus Vs, then we take away VR1, and then we take away V2, and that equals zero. So that would be the KVL equation for this circuit.

Now I'm going to plug in using node voltages. I'm going to write VR1, so I get plus Vs minus VR1 is node voltage V1 minus node voltage V2. V1 minus V2 minus V2 equals zero.

And we'll just do one more substitution. I forgot Vs and V1 are the same voltage, so this is actually V1 minus V1 minus V2 minus V2 equals zero. And if we look at this equation that goes plus V2 minus V2, this equation is automatically true.

If we write Kirchhoff's current law in terms of node voltages, it always turns out to be the case. That's why we don't bother to do it; we know it's going to be true. So that's a nice feature of the node voltage method. It's a really efficient way to write equations; you only write KCL equations.

And this is such a good method, in fact, that circuit simulators like you make come across a circuit simulator called SPICE. Almost every circuit simulator uses this node voltage method to do its computations.

More Articles

View All
Calculating internal energy and work example | Chemistry | Khan Academy
In this video, we’re going to do an example problem where we calculate internal energy and also calculate pressure-volume work. So we know the external pressure is 1.01 * 10^5 Pascals, and our system is some balloon. Let’s say it’s a balloon of argon gas.…
Will Mars Be a World Without Laws? | MARS
Law works because it’s effectively backed up by a state, and that kind of breaks down in space a little bit. The whole legality of who owns what is going to fill volumes. There are international treaties that relate to space. The UN Outer Space Treaty 196…
A Russian City's Surprising German Roots | National Geographic
In Kaliningrad, the architecture looks German. The neighborhood has some German names, and its most famous resident was Germany’s most renowned philosopher, Immanuel Kant. But this is not in Germany; this is Russia. The city began its life as Königsberg, …
15 Biggest Threats to Your Financial Security
Have you ever felt like your financial security was walking a tightrope? It can feel like any small gust of wind, a sudden expense, a job hiccup, or an unexpected twist in life could throw everything out of balance. But what if you could see those gusts o…
The Origins of Disgust
Being impressed by the cognitive abilities of a chimpanzee isn’t just good for them; it is good for us, because it helps us learn about our own evolutionary history. Comparing the psychology of humans to the psychology of other primates is a great way to …
Peter Lynch: How to invest in 2023
If you want to learn how to get rich investing in the stock market, Peter Lynch is someone you need to be learning from. Lynch has arguably the best track record of any stock picker that has managed large amounts of money during his time running the famou…