yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and Cosine come from circles


3m read
·Nov 11, 2024

Now I'm going to clear off the screen here, and we're going to talk about the shape of the sign function. Let's do that. This is a plot of the sign function, where the angle Theta—this is the Theta axis in this plot—where Theta has been plotted out on a straight line instead of wrapped around this circle.

So if we draw a line on here, let's make this, uh, this circle a radius one. If I draw this line up here and it's on a in a circle, the definition of sine of theta—this will be Theta here—is opposite over hypotenuse. So this is the opposite side, and that distance is the opposite leg of that triangle is this value right here. So sine of theta is actually equal to Y over the hypotenuse, and the hypotenuse is one in all cases around this.

So if I plot this on a curve, this is an angle, and I basically go over here and plot it like that. And then as Theta swings around the circle, I'm going to plot the different values of Y. If it comes over this way, down here like this, right? You can see that that plots over there like that. Now when the angle gets back all the way to zero, of course the sine function comes all the way back to zero, and then it repeats again as our vector swings around the other way.

So sine of 2 pi is zero, just like the sine of zero. So every two pi, if I go off the screen, every two pi comes back and repeats to zero. Now I want to do the same thing with the cosine function that we did with sine, where we project the projection of this value onto this time the cosine curve down here. This has the cosine curve with time going down on the page, and our definition of cosine was adjacent over hypotenuse. The hypotenuse is one in our drawing.

So cosine of theta equals adjacent, which is X, the x value, divided by hypotenuse, which is one. So in this diagram, the cosine of theta is actually the x value, which is this x right here.

So let me clean this off for a second, and we'll start at the beginning. Let's start with the radius pointing straight sideways, and we know that cosine of theta equals zero is one. So if I drop that down, if I project that down onto the angle zero, that's this point right here on the curve.

Now as we roll forward, we go to a higher angle. This projection now moves to here on the curve. When the arrow is straight up, we are at this point right here. We go back through the axis. If we continue on, this projects down here, and we're moving this radius vector around in a circle like this. Eventually, this one will be at the same point as before, as the one above, but it'll be on this part of the curve here.

And when we get back to zero again, the projection is to this point here. So that's a way to visualize the cosine curve getting generated by a vector rotating around this circle. The cosine comes out the bottom because it's the projection on the x-axis. When we did the sine, it was the projection on the y-axis that produced the sine wave when we went this way.

So I like to visualize this because this rotating vector is a really simple and powerful idea, and we can see how it actually generates—a way to generate sine and cosine waves. You can see how sort of naturally they come out at different phases, right? The sine starts at zero, and the cosine starts at one. With this way of drawing it, you can see why that happens.

So this relationship between circles and rotating vectors and sines and cosines is a very powerful idea, and we're really going to take advantage of this.

More Articles

View All
Neutron Stars – The Most Extreme Things that are not Black Holes
Neutron stars are one of the most extreme and violent things in the universe. Giant atomic nuclei, only a few kilometers in diameter, but as massive as stars. And they owe their existence to the death of something majestic. [Intro music] Stars exist beca…
Introduction to sampling distributions | Sampling distributions | AP Statistics | Khan Academy
What we’re going to do in this video is talk about the idea of a sampling distribution. Now, just to make things a little bit concrete, let’s imagine that we have a population of some kind. Let’s say it’s a bunch of balls; each of them has a number writte…
Why The Mind Hates Meditation
To avoid all evil, to cultivate good, and to cleanse one’s mind - this is the teaching of the Buddha. Meditation has been scientifically proven to have many health benefits, like reduced anxiety and better emotional health. While this is great, I also see…
Warren Buffett: How to Generate 50% Returns with Small Amounts of Money (Recent Interview)
To could earn 50% a year the answer would be, in my particular case, it would be: everything you have ever learned about money is wrong, and you’re about to find out why. In this video, you see there is an old saying that it takes money to make money, me…
TIL: There's Probably a Raccoon Living on Every City Block in North America | Today I Learned
Every city block probably has a raccoon living on it, and people very rarely see them or even know that they’re there. These animals have adapted to urban living in a way that makes them common and present in almost every major urban complex throughout th…
What is a Virus? | Breakthrough
Virus is actually just genetic material encased in an envelope, and it actually needs a host like me or you in order for it to infect and continue to produce more copies of itself. So what happens is a virus infects me, let’s say, and my immune system sta…