yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and Cosine come from circles


3m read
·Nov 11, 2024

Now I'm going to clear off the screen here, and we're going to talk about the shape of the sign function. Let's do that. This is a plot of the sign function, where the angle Theta—this is the Theta axis in this plot—where Theta has been plotted out on a straight line instead of wrapped around this circle.

So if we draw a line on here, let's make this, uh, this circle a radius one. If I draw this line up here and it's on a in a circle, the definition of sine of theta—this will be Theta here—is opposite over hypotenuse. So this is the opposite side, and that distance is the opposite leg of that triangle is this value right here. So sine of theta is actually equal to Y over the hypotenuse, and the hypotenuse is one in all cases around this.

So if I plot this on a curve, this is an angle, and I basically go over here and plot it like that. And then as Theta swings around the circle, I'm going to plot the different values of Y. If it comes over this way, down here like this, right? You can see that that plots over there like that. Now when the angle gets back all the way to zero, of course the sine function comes all the way back to zero, and then it repeats again as our vector swings around the other way.

So sine of 2 pi is zero, just like the sine of zero. So every two pi, if I go off the screen, every two pi comes back and repeats to zero. Now I want to do the same thing with the cosine function that we did with sine, where we project the projection of this value onto this time the cosine curve down here. This has the cosine curve with time going down on the page, and our definition of cosine was adjacent over hypotenuse. The hypotenuse is one in our drawing.

So cosine of theta equals adjacent, which is X, the x value, divided by hypotenuse, which is one. So in this diagram, the cosine of theta is actually the x value, which is this x right here.

So let me clean this off for a second, and we'll start at the beginning. Let's start with the radius pointing straight sideways, and we know that cosine of theta equals zero is one. So if I drop that down, if I project that down onto the angle zero, that's this point right here on the curve.

Now as we roll forward, we go to a higher angle. This projection now moves to here on the curve. When the arrow is straight up, we are at this point right here. We go back through the axis. If we continue on, this projects down here, and we're moving this radius vector around in a circle like this. Eventually, this one will be at the same point as before, as the one above, but it'll be on this part of the curve here.

And when we get back to zero again, the projection is to this point here. So that's a way to visualize the cosine curve getting generated by a vector rotating around this circle. The cosine comes out the bottom because it's the projection on the x-axis. When we did the sine, it was the projection on the y-axis that produced the sine wave when we went this way.

So I like to visualize this because this rotating vector is a really simple and powerful idea, and we can see how it actually generates—a way to generate sine and cosine waves. You can see how sort of naturally they come out at different phases, right? The sine starts at zero, and the cosine starts at one. With this way of drawing it, you can see why that happens.

So this relationship between circles and rotating vectors and sines and cosines is a very powerful idea, and we're really going to take advantage of this.

More Articles

View All
Everything wrong with my Tesla Model 3
What’s up you guys, it’s Graham here. So, almost one year ago, I bought myself a Tesla Model 3. This is my first time buying a brand new car, it’s my first ever electric car, and it’s my first experience ever buying a car online completely sight unseen. …
Integration with partial fractions | AP Calculus BC | Khan Academy
[Instructor] We are asked to find the value of this indefinite integral. And some of you, in attempting this, might try to say, all right, is the numerator here the derivative or a constant multiple of the derivative of the denominator? In which case, u-s…
Why Scientists Are Puzzled By This Virus
Very recently, scientists discovered that your body is teeming with trillions of the most bizarre viruses. These viruses are not your enemies but critical to your health, protecting you from disease, maybe even killing cancer. A new frontier of science, s…
Phil Town's Stock Portfolio REVEALED! (Rule #1 Fund Annual Report)
Hey guys, welcome back to the channel! In this video, we are going to be talking about Phil Town’s stock and options portfolio because we actually get this revealed to us now. Phil Town has announced, or he has released or filed the first Rule One Fund a…
Circadian Blues | National Geographic
A suburban home here looks like cunning predators who will not rest until they have driven sleep into extinction. They have evolved to emit a blue light that is remarkably similar to daylight. Humans, attracted by the light, soon find themselves mesmerize…
What’s It Like to Photograph the Pope? | Exposure
I’ve never had an assignment that was so frightening in that I had no idea what I was going to shoot. The biggest challenge to photographing the Vatican that I found was simply getting in there. It’s like a gigantic curtain. Just to get behind this curtai…