yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The woman who stared at the sun - Alex Gendler


3m read
·Nov 8, 2024

In the spring of 1944, Tokyo residents experienced numerous aerial attacks from Allied bombers. Air raid sirens warned citizens to get indoors and preceded strategic blackouts across the city. But 28-year-old Hisako Koyama saw these blackouts as opportunities. Dragging a futon over her head for protection, Koyama would gaze at the night sky, tracking all sorts of astronomical phenomena.

However, her latest endeavor required the light of day. By angling her telescope towards the sun, Koyama could project the star's light onto a sheet of paper, allowing her to sketch the sun’s shifting surface. She spent weeks recreating this setup, tracking every change she saw. But while Koyama didn't know it, these drawings were the start of one of the most important records of solar activity in human history.

To understand exactly what Koyama saw on the sun’s surface, we first need to understand what’s happening inside the star. Every second, trillions of hydrogen atoms fuse into helium atoms in a process called nuclear fusion. This ongoing explosion maintains the sun’s internal temperature of roughly 15 million degrees Celsius, which is more than enough energy to transform gas into churning pools of plasma. Plasma consists of charged particles that produce powerful magnetic fields.

But unlike the stable charged particles that maintain magnetic activity on Earth, this plasma is constantly in flux, alternately disrupting and amplifying the sun's magnetic field. This ongoing movement can produce temporary concentrations of magnetic activity which inhibit the movement of molecules and in turn reduce heat in that area. And since regions with less heat generate less light, places with the strongest magnetic fields appear as dark spots scattered across the sun’s surface.

These so-called sunspots are always moving, both as a result of plasma swirling within the sphere and the sun’s rotation. And because they’re often clustered together, accurately counting sunspots and tracking their movement can be a challenge, depending greatly on the perception and judgment of the viewer. This is precisely where Koyama’s contributions would be so valuable.

Despite having no formal training in astronomy, her observations and sketches were remarkably accurate. After sending her work to the Oriental Astronomical Association, she received a letter of commendation for her dedicated and detailed observations. With their support, she began to visit the Tokyo Museum of Science, where she could use a far superior telescope to continue her work.

Koyama soon joined the museum's staff as a professional observer, and over the next 40 years, she worked on a daily basis, producing over 10,000 drawings of the sun’s surface. Researchers already knew magnetic currents in the sun followed an 11-year cycle that moved sunspots in a butterfly-shaped path over the star’s surface. But using Koyama’s record, they could precisely follow specific sunspots and clusters through that journey.

This kind of detail offered a real-time indication of the sun’s magnetic activity, allowing scientists to track all kinds of solar phenomena, including volatile solar flares. These flares typically emanate from the vicinity of sunspots and can travel all the way to Earth’s atmosphere. Here, they can create geomagnetic storms capable of disrupting long-range communication and causing blackouts. Solar flares also pose a major risk to satellites and manned space stations, making them essential to predict and plan for.

During an interview in 1964, Koyama lamented that her 17 years of observation had barely been enough to produce a single butterfly record of the solar cycle. But by the end of her career, she’d drawn three and a half cycles—one of the longest records ever made. Better still, the quality of her drawings was so consistent, researchers used them as a baseline to reconstruct the past 400 years of sunspot activity from various historical sources.

This project extends Koyama’s legacy far beyond her own lifetime and proves that science is not built solely on astounding discoveries, but also on careful observation of the world around us.

More Articles

View All
Escape to the Stunning Wilderness of Ontario | National Geographic
A spirit is everywhere. Spirits in the water, spirits in the land, spirits in the animals. You know, it’s not empty. There’s no such thing as an empty earth, empty land, as the spirits are still learned. So that energy still learned, that life. To me, to …
Why No One Has Measured The Speed Of Light
This video was sponsored by KiwiCo. More about KiwiCo at the end of the show. I know what you’re thinking. - Clickbait! - No one has measured the speed of light, that’s ridiculous. The speed of light is exactly 299,792,458 meters per second. We are so s…
The Largest Black Hole in the Universe - Size Comparison
The largest things in the universe are black holes. In contrast to things like planets or stars, they have no physical size limit and can literally grow endlessly. Although, in reality, specific things need to happen to create different kinds of black hol…
A Mexican Wolf Pup’s Journey into the Wild | Podcast | Overheard at National Geographic
Foreign [Music] This is what it sounds like to explore New Mexico’s Gila Wilderness on horseback. On a recent assignment for National Geographic, I got to venture deep into the Gila with a photographer, podcast producer, and a backcountry guide. The Gila …
Jeff Bezos – March 1998, earliest long speech
Good evening and welcome to the annual A.B. Dick lecture on entrepreneurship at Lake Forest College. Lake Forest College, 32 miles north of Chicago, was established in 1857 as a private co-educational liberal arts college. Lake Forest College engages our …
Why Laminar Flow is AWESOME - Smarter Every Day 208
Hey, it’s me Destin, welcome back to Smarter Every Day. I love laminar flow. And people send me tweets about laminar flow all over the internet. It’s time to do the laminar flow video. Check this out, big pool. We’re going to see if we can make laminar fl…