yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The woman who stared at the sun - Alex Gendler


3m read
·Nov 8, 2024

In the spring of 1944, Tokyo residents experienced numerous aerial attacks from Allied bombers. Air raid sirens warned citizens to get indoors and preceded strategic blackouts across the city. But 28-year-old Hisako Koyama saw these blackouts as opportunities. Dragging a futon over her head for protection, Koyama would gaze at the night sky, tracking all sorts of astronomical phenomena.

However, her latest endeavor required the light of day. By angling her telescope towards the sun, Koyama could project the star's light onto a sheet of paper, allowing her to sketch the sun’s shifting surface. She spent weeks recreating this setup, tracking every change she saw. But while Koyama didn't know it, these drawings were the start of one of the most important records of solar activity in human history.

To understand exactly what Koyama saw on the sun’s surface, we first need to understand what’s happening inside the star. Every second, trillions of hydrogen atoms fuse into helium atoms in a process called nuclear fusion. This ongoing explosion maintains the sun’s internal temperature of roughly 15 million degrees Celsius, which is more than enough energy to transform gas into churning pools of plasma. Plasma consists of charged particles that produce powerful magnetic fields.

But unlike the stable charged particles that maintain magnetic activity on Earth, this plasma is constantly in flux, alternately disrupting and amplifying the sun's magnetic field. This ongoing movement can produce temporary concentrations of magnetic activity which inhibit the movement of molecules and in turn reduce heat in that area. And since regions with less heat generate less light, places with the strongest magnetic fields appear as dark spots scattered across the sun’s surface.

These so-called sunspots are always moving, both as a result of plasma swirling within the sphere and the sun’s rotation. And because they’re often clustered together, accurately counting sunspots and tracking their movement can be a challenge, depending greatly on the perception and judgment of the viewer. This is precisely where Koyama’s contributions would be so valuable.

Despite having no formal training in astronomy, her observations and sketches were remarkably accurate. After sending her work to the Oriental Astronomical Association, she received a letter of commendation for her dedicated and detailed observations. With their support, she began to visit the Tokyo Museum of Science, where she could use a far superior telescope to continue her work.

Koyama soon joined the museum's staff as a professional observer, and over the next 40 years, she worked on a daily basis, producing over 10,000 drawings of the sun’s surface. Researchers already knew magnetic currents in the sun followed an 11-year cycle that moved sunspots in a butterfly-shaped path over the star’s surface. But using Koyama’s record, they could precisely follow specific sunspots and clusters through that journey.

This kind of detail offered a real-time indication of the sun’s magnetic activity, allowing scientists to track all kinds of solar phenomena, including volatile solar flares. These flares typically emanate from the vicinity of sunspots and can travel all the way to Earth’s atmosphere. Here, they can create geomagnetic storms capable of disrupting long-range communication and causing blackouts. Solar flares also pose a major risk to satellites and manned space stations, making them essential to predict and plan for.

During an interview in 1964, Koyama lamented that her 17 years of observation had barely been enough to produce a single butterfly record of the solar cycle. But by the end of her career, she’d drawn three and a half cycles—one of the longest records ever made. Better still, the quality of her drawings was so consistent, researchers used them as a baseline to reconstruct the past 400 years of sunspot activity from various historical sources.

This project extends Koyama’s legacy far beyond her own lifetime and proves that science is not built solely on astounding discoveries, but also on careful observation of the world around us.

More Articles

View All
Warren Buffett: Should You Wait for a Market Crash Before Buying Stocks?
It seems like nearly every video on YouTube is warning investors that stock prices are too high and that they should be worrying about an upcoming stock market crash. With the stock market hitting all-time highs, I need to better understand how I should b…
POV "Kittycam" Reveals These Stray Cats Prey on More Than Birds | National Geographic
[Music] When people see a feral cat on the side of the road, they’re thinking this is akin to my cat being out there in the wild with no food, exposed to the elements, and they have a lot of compassion to want to help them. But people don’t always see tha…
Will the Stock Market Crash if Joe Biden is Elected President?
A lot of people are concerned that if Donald Trump doesn’t get re-elected, then we’re going to see the stock market come crashing down, because Trump is very much focused on policies that help out businesses, whereas Joe Biden is more focused on the avera…
Explore the Stunning Beauty of Laos's Louangphrabang | National Geographic
Set at the confluence of the Mekong and Nam Khan rivers, the port town of Luang Prabang in northern Laos is an exceptional combination of natural splendor and abundant spiritual traditions. [Music] The town was designated a World Heritage Site in 1995 for…
Debugging with stack traces | Intro to CS - Python | Khan Academy
Debugging is just a fancy term for fixing errors in programs. It’s the process of removing bugs, so we call it “debug” since it’s something we’ll be doing often. Let’s learn how to work together with our IDE to track down and fix bugs in our programs. He…
Does Earth Have a Twin? These People Want to Find Out | Short Film Showcase
[Music] Curiosity and exploration are simply part of our DNA. What’s at the top of that mountain? What’s around that ridge? What’s in that forest? What’s across that body of water? This quest to explore things that we think might be beyond our reach or mi…