yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The woman who stared at the sun - Alex Gendler


3m read
·Nov 8, 2024

In the spring of 1944, Tokyo residents experienced numerous aerial attacks from Allied bombers. Air raid sirens warned citizens to get indoors and preceded strategic blackouts across the city. But 28-year-old Hisako Koyama saw these blackouts as opportunities. Dragging a futon over her head for protection, Koyama would gaze at the night sky, tracking all sorts of astronomical phenomena.

However, her latest endeavor required the light of day. By angling her telescope towards the sun, Koyama could project the star's light onto a sheet of paper, allowing her to sketch the sun’s shifting surface. She spent weeks recreating this setup, tracking every change she saw. But while Koyama didn't know it, these drawings were the start of one of the most important records of solar activity in human history.

To understand exactly what Koyama saw on the sun’s surface, we first need to understand what’s happening inside the star. Every second, trillions of hydrogen atoms fuse into helium atoms in a process called nuclear fusion. This ongoing explosion maintains the sun’s internal temperature of roughly 15 million degrees Celsius, which is more than enough energy to transform gas into churning pools of plasma. Plasma consists of charged particles that produce powerful magnetic fields.

But unlike the stable charged particles that maintain magnetic activity on Earth, this plasma is constantly in flux, alternately disrupting and amplifying the sun's magnetic field. This ongoing movement can produce temporary concentrations of magnetic activity which inhibit the movement of molecules and in turn reduce heat in that area. And since regions with less heat generate less light, places with the strongest magnetic fields appear as dark spots scattered across the sun’s surface.

These so-called sunspots are always moving, both as a result of plasma swirling within the sphere and the sun’s rotation. And because they’re often clustered together, accurately counting sunspots and tracking their movement can be a challenge, depending greatly on the perception and judgment of the viewer. This is precisely where Koyama’s contributions would be so valuable.

Despite having no formal training in astronomy, her observations and sketches were remarkably accurate. After sending her work to the Oriental Astronomical Association, she received a letter of commendation for her dedicated and detailed observations. With their support, she began to visit the Tokyo Museum of Science, where she could use a far superior telescope to continue her work.

Koyama soon joined the museum's staff as a professional observer, and over the next 40 years, she worked on a daily basis, producing over 10,000 drawings of the sun’s surface. Researchers already knew magnetic currents in the sun followed an 11-year cycle that moved sunspots in a butterfly-shaped path over the star’s surface. But using Koyama’s record, they could precisely follow specific sunspots and clusters through that journey.

This kind of detail offered a real-time indication of the sun’s magnetic activity, allowing scientists to track all kinds of solar phenomena, including volatile solar flares. These flares typically emanate from the vicinity of sunspots and can travel all the way to Earth’s atmosphere. Here, they can create geomagnetic storms capable of disrupting long-range communication and causing blackouts. Solar flares also pose a major risk to satellites and manned space stations, making them essential to predict and plan for.

During an interview in 1964, Koyama lamented that her 17 years of observation had barely been enough to produce a single butterfly record of the solar cycle. But by the end of her career, she’d drawn three and a half cycles—one of the longest records ever made. Better still, the quality of her drawings was so consistent, researchers used them as a baseline to reconstruct the past 400 years of sunspot activity from various historical sources.

This project extends Koyama’s legacy far beyond her own lifetime and proves that science is not built solely on astounding discoveries, but also on careful observation of the world around us.

More Articles

View All
15 Ways Rich People AVOID Paying Taxes
Hello Aluxers and welcome back to what might be one of the most important Sunday Motivational Videos you’ve ever watched, because by the end of this piece, you’ll understand how to keep more of your money than ever before. If you search for this kind of …
Identifying proportional & non-proportional functions | Grade 8 (TX TEKS) | Khan Academy
We’re asked which situations represent a proportional relationship. Choose all answers that apply. Pause this video and have a go at this before we do this together. All right, before I even look at these choices, a proportional relationship would be bet…
The Bike Riding Monk | Uncensored with Michael Ware
[music playing] MICHAEL: Russian Orthodox Christianity runs deep within the Night Wolves motorcycle club. They even have their own bike riding monk, a chaplain called Father Guriy. How can I resist? I have to meet him. Oh, Father Guriy himself. Ah, than…
The presidential incumbency advantage | US government and civics | Khan Academy
What we’re going to do in this video is talk about the incumbent advantage. This is the idea that the person who is already in power, the incumbent, has an advantage in elections. In particular, we’re going to focus on presidential elections, although thi…
How to get leads in Real Estate
What’s up you guys, it’s Graham here! So today I’m going to be making a video about how to get clients and get leads in real estate. I’ll be starting with some really obvious ways first, and then working into a few more unorthodox approaches that you can …
Three Incorrect Laws of Motion
Nearly 350 years ago, Isaac Newton came up with three laws of motion that govern how everything moves. There are three pretty famous laws of motion. And they’re not very complicated, but if I told them to you as clearly as I can, you would think that you’…