yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The woman who stared at the sun - Alex Gendler


3m read
·Nov 8, 2024

In the spring of 1944, Tokyo residents experienced numerous aerial attacks from Allied bombers. Air raid sirens warned citizens to get indoors and preceded strategic blackouts across the city. But 28-year-old Hisako Koyama saw these blackouts as opportunities. Dragging a futon over her head for protection, Koyama would gaze at the night sky, tracking all sorts of astronomical phenomena.

However, her latest endeavor required the light of day. By angling her telescope towards the sun, Koyama could project the star's light onto a sheet of paper, allowing her to sketch the sun’s shifting surface. She spent weeks recreating this setup, tracking every change she saw. But while Koyama didn't know it, these drawings were the start of one of the most important records of solar activity in human history.

To understand exactly what Koyama saw on the sun’s surface, we first need to understand what’s happening inside the star. Every second, trillions of hydrogen atoms fuse into helium atoms in a process called nuclear fusion. This ongoing explosion maintains the sun’s internal temperature of roughly 15 million degrees Celsius, which is more than enough energy to transform gas into churning pools of plasma. Plasma consists of charged particles that produce powerful magnetic fields.

But unlike the stable charged particles that maintain magnetic activity on Earth, this plasma is constantly in flux, alternately disrupting and amplifying the sun's magnetic field. This ongoing movement can produce temporary concentrations of magnetic activity which inhibit the movement of molecules and in turn reduce heat in that area. And since regions with less heat generate less light, places with the strongest magnetic fields appear as dark spots scattered across the sun’s surface.

These so-called sunspots are always moving, both as a result of plasma swirling within the sphere and the sun’s rotation. And because they’re often clustered together, accurately counting sunspots and tracking their movement can be a challenge, depending greatly on the perception and judgment of the viewer. This is precisely where Koyama’s contributions would be so valuable.

Despite having no formal training in astronomy, her observations and sketches were remarkably accurate. After sending her work to the Oriental Astronomical Association, she received a letter of commendation for her dedicated and detailed observations. With their support, she began to visit the Tokyo Museum of Science, where she could use a far superior telescope to continue her work.

Koyama soon joined the museum's staff as a professional observer, and over the next 40 years, she worked on a daily basis, producing over 10,000 drawings of the sun’s surface. Researchers already knew magnetic currents in the sun followed an 11-year cycle that moved sunspots in a butterfly-shaped path over the star’s surface. But using Koyama’s record, they could precisely follow specific sunspots and clusters through that journey.

This kind of detail offered a real-time indication of the sun’s magnetic activity, allowing scientists to track all kinds of solar phenomena, including volatile solar flares. These flares typically emanate from the vicinity of sunspots and can travel all the way to Earth’s atmosphere. Here, they can create geomagnetic storms capable of disrupting long-range communication and causing blackouts. Solar flares also pose a major risk to satellites and manned space stations, making them essential to predict and plan for.

During an interview in 1964, Koyama lamented that her 17 years of observation had barely been enough to produce a single butterfly record of the solar cycle. But by the end of her career, she’d drawn three and a half cycles—one of the longest records ever made. Better still, the quality of her drawings was so consistent, researchers used them as a baseline to reconstruct the past 400 years of sunspot activity from various historical sources.

This project extends Koyama’s legacy far beyond her own lifetime and proves that science is not built solely on astounding discoveries, but also on careful observation of the world around us.

More Articles

View All
Calculating a z statistic in a test about a proportion | AP Statistics | Khan Academy
The mayor of a town saw an article that claimed the national unemployment rate is eight percent. They wondered if this held true in their own town, so they took a sample of 200 residents to test the null hypothesis. The null hypothesis is that the unemplo…
See Why Sochi Is One of Russia's Best Vacation Spots | National Geographic
[Music] There have been a lot of problems coming out of Sochi. There’s con anxiety among, it’s still a ghost town. Stories such as these have dominated American media, but to me, the portrait seemed incomplete, and I wondered if there was another perspect…
Svalbard - The Northernmost Town on Earth
Come take a walk with me, around Longyearbyen. That’s the largest town on the Norwegian islands of Svalbard. Parts of it may look familiar. But make no mistake, this place IS different. At 78° north, it is just 1800mi/1300km from the North Pole. And with …
Khan Academy Ed Talks featuring Elisa Villanueva Beard - Wednesday, December 9
Hi everyone! Sal Khan here from Khan Academy. Welcome to Ed Talks on Khan Academy. I know what you’re thinking: What are these Ed Talks? Well, this is kind of a subset of the Homeroom with Sal conversations that are more focused on education and are from …
Memories Make Us Who We Are | Breakthrough
Steve believes our identities are built on memory. [Music] When you think about memory, it is the thing that threads and unifies our overall sense of being. So, without it, we become stuck in time, right? And we lose our [Music] identity. But how reliab…
Functions continuous on all real numbers | Limits and continuity | AP Calculus AB | Khan Academy
Which of the following functions are continuous for all real numbers? So let’s just remind ourselves what it means to be continuous, what a continuous function looks like. A continuous function—let’s say that’s my Y-axis, that is my X-axis—a function is …