yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The woman who stared at the sun - Alex Gendler


3m read
·Nov 8, 2024

In the spring of 1944, Tokyo residents experienced numerous aerial attacks from Allied bombers. Air raid sirens warned citizens to get indoors and preceded strategic blackouts across the city. But 28-year-old Hisako Koyama saw these blackouts as opportunities. Dragging a futon over her head for protection, Koyama would gaze at the night sky, tracking all sorts of astronomical phenomena.

However, her latest endeavor required the light of day. By angling her telescope towards the sun, Koyama could project the star's light onto a sheet of paper, allowing her to sketch the sun’s shifting surface. She spent weeks recreating this setup, tracking every change she saw. But while Koyama didn't know it, these drawings were the start of one of the most important records of solar activity in human history.

To understand exactly what Koyama saw on the sun’s surface, we first need to understand what’s happening inside the star. Every second, trillions of hydrogen atoms fuse into helium atoms in a process called nuclear fusion. This ongoing explosion maintains the sun’s internal temperature of roughly 15 million degrees Celsius, which is more than enough energy to transform gas into churning pools of plasma. Plasma consists of charged particles that produce powerful magnetic fields.

But unlike the stable charged particles that maintain magnetic activity on Earth, this plasma is constantly in flux, alternately disrupting and amplifying the sun's magnetic field. This ongoing movement can produce temporary concentrations of magnetic activity which inhibit the movement of molecules and in turn reduce heat in that area. And since regions with less heat generate less light, places with the strongest magnetic fields appear as dark spots scattered across the sun’s surface.

These so-called sunspots are always moving, both as a result of plasma swirling within the sphere and the sun’s rotation. And because they’re often clustered together, accurately counting sunspots and tracking their movement can be a challenge, depending greatly on the perception and judgment of the viewer. This is precisely where Koyama’s contributions would be so valuable.

Despite having no formal training in astronomy, her observations and sketches were remarkably accurate. After sending her work to the Oriental Astronomical Association, she received a letter of commendation for her dedicated and detailed observations. With their support, she began to visit the Tokyo Museum of Science, where she could use a far superior telescope to continue her work.

Koyama soon joined the museum's staff as a professional observer, and over the next 40 years, she worked on a daily basis, producing over 10,000 drawings of the sun’s surface. Researchers already knew magnetic currents in the sun followed an 11-year cycle that moved sunspots in a butterfly-shaped path over the star’s surface. But using Koyama’s record, they could precisely follow specific sunspots and clusters through that journey.

This kind of detail offered a real-time indication of the sun’s magnetic activity, allowing scientists to track all kinds of solar phenomena, including volatile solar flares. These flares typically emanate from the vicinity of sunspots and can travel all the way to Earth’s atmosphere. Here, they can create geomagnetic storms capable of disrupting long-range communication and causing blackouts. Solar flares also pose a major risk to satellites and manned space stations, making them essential to predict and plan for.

During an interview in 1964, Koyama lamented that her 17 years of observation had barely been enough to produce a single butterfly record of the solar cycle. But by the end of her career, she’d drawn three and a half cycles—one of the longest records ever made. Better still, the quality of her drawings was so consistent, researchers used them as a baseline to reconstruct the past 400 years of sunspot activity from various historical sources.

This project extends Koyama’s legacy far beyond her own lifetime and proves that science is not built solely on astounding discoveries, but also on careful observation of the world around us.

More Articles

View All
THE FED JUST HIKED RATES *AGAIN* | Major Changes Explained
What’s up, Graham? It’s guys here. So, you know the saying that history doesn’t repeat itself, but it often rhymes? Well, that’s what many believe is beginning to happen as the Federal Reserve heads towards an event that we haven’t seen in almost 50 years…
“The most useful piece of advice to get into real estate at 18?” - Calling Subscribers on Snapchat!
What’s up you guys? It’s Graham here. So I’m testing out some new audio equipment, and I also figured this would be a good time to test out an idea I had. So basically, I get a ton of Snapchat messages and a ton of Instagram DMs, and I just can’t possibl…
This Guy Is Making Furniture and Buildings out of Your Trash | Nat Geo Live
[Arthur] I hate plastic. That’s why we’ve engulfed on a 15 year mission to turn that into something that we actually want. We have collected around 750 new materials that’s coming from our daily post-consumer waste. It can go into any consumer product a…
Politics and indigenous relations in the New England colonies | AP US History | Khan Academy
[Instructor] In the last video, we began discussing some of the similarities and differences between the English colonists who landed at New England versus those who landed in Virginia. Thanks to different reasons for migrating to the New World and a much…
The Lagrangian
All right, so today I’m going to be talking about the Lagrange multipliers. Now, we’ve talked about Lagrange multipliers; this is a highly related concept. In fact, it’s not really teaching anything new; this is just repackaging stuff that we already know…
Crypto Will Be The 12th Sector of The S&P! | Bitcoin 2022
[Music] It’s pretty chaotic here on the first day because nobody knows where to go. There’s 50,000 people showing. The first day probably about 250,000 by the time this is over, and it’s really going to be big this year because there’s so many institution…