yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
THE NEW $1200 STIMULUS CHECK | ALL DETAILS REVEALED
What’s up guys, it’s Graham here. So wow, it’s been a while since we talked about what’s going on with the stimulus check and stimulus package. Even though this is something I have not covered since May 29th, which is basically like a decade in YouTube ti…
The Stanford Prison Experiment: Unlocking The Truth | Official Trailer | National Geographic
I’ve only been in jail once: the Stanford prison experiment. In the summer of 1971, Dr. Zimbardo took a bunch of college kids, randomly assigned them to be prisoners and guards, and locked them in the basement. The only thing we told the guards was, “Do w…
Functions continuous at specific x-values | Limits and continuity | AP Calculus AB | Khan Academy
Which of the following functions are continuous at x = 3? Well, as we said in the previous video, in the previous example, in order to be continuous at a point, you at least have to be defined at that point. We saw our definition of continuity: f is cont…
Fire Starter Extraordinaire | Dirty Rotten Survival
Now we’ll find out if Dave really is the fire-making Maestro he claims to be. Depending on your environment and your resources, a very, very difficult challenge. I’m going to use everything that Dick and Johnny have in their kits, as well as what I have i…
Simplifying numerical expressions | Algebraic reasoning | Grade 5 (TX TEKS) | Khan Academy
All right, what we’re going to do in this video is get a little bit of practice evaluating expressions that look a little bit complicated. So, why don’t you pause the video and see how you would evaluate this expression on the left and this expression on …
Lead Lag
In this video, we’re going to introduce a couple of words to help talk about the relationship between sine and cosine, or different sinusoids that have the same frequency but a different timing relationship. So what I’ve shown here is a plot of a cosine …