yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Managing your bank account | Banking | Financial Literacy | Khan Academy
In this video, we’re going to talk about how it can be very valuable to automate your deposits and your withdrawals into a checking account, and why that actually might be useful. So in the old days, what would typically happen is someone might cut a che…
Jocko Willink and Mike Sarraille - Helping Veterans Transition into the Private Sector
Um, alright guys, well thanks for hosting me to a podcast at the Jocko podcast studio. For those of our listeners that don’t know about you guys, I think we should start with some quick intros and then start talking about the new program you’re working on…
James Manyika on how the pandemic has accelerated the future of work | Homeroom with Sal
Hi everyone! Welcome to our daily homeroom. I’m very excited about the guest we have today. Before we jump into that conversation, I will give my standard announcement. I want to remind everyone that Khan Academy is a not-for-profit organization that can…
Rhinos For Sale | Explorer
It’s a bit of an irony to be here because, on one hand, it’s beautiful, peaceful, and serene, but you’re actually at the eye of the storm when it comes to the war on rhinos. So we go over to always a very, very special part of this particular auction, wh…
The Most Powerful Way to Think | First Principles
In the previous video, we discussed the idea of power and created a framework for thinking about it. I claimed that someone needed two fundamental ingredients to be powerful: a true understanding of the world and the resources to shape it. As promised, we…
Steve Jobs in Sweden, 1985 [HQ]
[Music] Glad to meet you. [Applause] The doors have been locked and all of you that don’t sign up to buy computers will stay here, and we will bring back the singers. I am extraordinarily pleased to be able to be here with you. This is one of my perso…