yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Slope and y intercept from equation
What I’d like to do in this video is a few more examples recognizing the slope and y-intercept given an equation. So let’s start with something that we might already recognize: let’s say we have something of the form (y = 5x + 3). What is the slope and …
Estimating mean and median in data displays | AP Statistics | Khan Academy
We are told researchers scored 31 athletes on an agility test. Here are their scores; it’s in this histogram. And what I’m going to ask you is which of these intervals, interval A, B, or C, which one contains the median of the scores and which one, or giv…
What I Wish I Knew When I Was Younger
Welcome to beautiful Vancouver, British Columbia. This is actually where I grew up, just across that water. And I remember when I was a teenager here I wanted to be a film maker. And so what did I do? Well, I found a film director with a strange name who …
What Cats Teach Us About Happiness | A Cat's Philosophy
Most of us would agree that cats and humans are vastly different. We tend to think of ourselves as more developed, as a higher species, not just because of our superior intelligence but also because we gave ourselves the gift of morality and ethics. Unlik…
Making a Deal With a Cartel Boss | Locked Up Abroad
Boston is the university capital of the United States. There was a lot of rich kids who just wanted to smoke pot, and it was a perfect market for us. We felt indestructible; people were getting hired, they loved our product. [Music] Our business grew an…
How Small Is An Atom? Spoiler: Very Small.
Atoms are ridiculous and unbelievably small. A single human hair is about as thick as 500,000 carbon atoms stacked over each other. Look at your fist; it contains trillions and trillions of atoms. If one atom in it were about as big as a marble, how big w…