yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Resonance | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Let’s see if we can draw the Lewis diagram for a nitrate anion. So, a nitrate anion has one nitrogen and three oxygens, and it has a negative charge. I’ll do that in another color; it has a negative charge. So, pause this video and see if you can draw th…
Crayfish Hunting in Tasmania | Gordon Ramsay: Uncharted
I’m 30 feet down using a dining system I’d never tried before called snuba. I’m trying to keep my air hose from strangling me, praying I don’t run into a great white below the surface. I try to focus on finding a crayfish. I fight through the thick kelp u…
Day 10 Remodeling Update - The 2 unavoidable setbacks
What’s up you guys? It’s going here, so I figured I would make a very quick update video and share with you guys all the work that’s being done in this place. A lot has gotten done over the last week and a half that this has been going on. As you can see…
Misconceptions About Falling Objects
Let’s say Jack holds both balls above his head and then he drops them at exactly the same time. What do you expect to see? Well, they’re going to hit the ground at the same time. I expect them to both land at the same time. The same time, same time! This…
Ray Dalio: Bearish On Bitcoin, But Still Buys
Well, you thought that I was done talking about Ray Dalio? No way! Because, interestingly, while most of his interviews at the moment talk about macroeconomics and investing in China and so on, I was very surprised to hear him bring up the fact that he ha…
Using similar triangles to reason about slope | Grade 8 (TX) | Khan Academy
So you have likely already learned about the notion of the slope of a line and what we define that is. The change in y over the change in x as we go from any one point on the line to another point on the line. Some of you, when you first saw this, might b…