yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Economies and diseconomies of scale | APⓇ Microeconomics | Khan Academy
In the last video, we were able to construct here in red this long run average total cost curve based on connecting the minimum points or the bottoms of the u’s of our various short run average total cost curves. Each of those short run average total cost…
Mr. Freeman, part 49
I constantly hear - Freeman, what should we do? Give us a sign! Make a revolution! We will follow you! Aaah… You know all the answers to all of your questions, but you like it so much to pose as gifted with naivety girls… All right, I’ll retrieve the ans…
The Crux Episode 1 | Full Episode | National Geographic
Traditionally, climbers are seen as very friendly, lovely people. I love the climbing community, and it’s just so beautiful. Everyone in the competitions really feels like close friends to me; I love the atmosphere. I love the camaraderie. I love my teamm…
Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy
An object is moving along a line. The following graph gives the object’s velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out. All right, now let’s do…
Home Chandalar Home | Life Below Zero
[Music] On a clear day, you can see mountains all across the horizon. Down there, big mountains. Can’t see anything down there now. What about just getting over to the flats though? That might be a little tricky. Yeah, I can uh get over these next couple…
Optimistic Nihilism
Human existence is scary and confusing. A few hundred thousand years ago, we became conscious and found ourselves in a strange place. It was filled with other beings. We could eat some; some could eat us. There was liquid stuff we could drink; things we c…