yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
#shorts Interseteller Watch
This is their Murf. This is going to be a watch inspired by, I believe, it was the 2014 film Interstellar. So, if you’ve ever seen that film, this actually had an important part to the plot. The first that came out was a few years ago; it was at 42 mm tha…
15 Ways To Start A New, Better Life
While you’re busy thinking of a better life, your current and only life you have slowly passes you by. And while lifetimes are measured in decades, progress is measured in days. Welcome to Alux! Who knew that your physical health has positive effects thro…
The Battle of SHARKS!
While riding my bike around London, I stumbled upon this and was like, “Surprise!” Sharks raise questions that need answers. So once back home, to Google I went, with a search query that would turn the next six weeks of my life real weird with phone calls…
History of the Democratic Party | American civics | US government and civics | Khan Academy
All right, Kim. We have 216 years of Democratic party history to cover. Let’s cut the pleasantries and get right to it. Who is this man? That is Thomas Jefferson. He does not look like the baby-faced boy that he was in this image. Is this his presidential…
Conditions for IVT and EVT: graph | Existence theorems | AP Calculus AB | Khan Academy
So we have the graph of ( y ) is equal to ( h ) of ( x ) right over here and they ask us, does the intermediate value theorem apply to ( h ) over the closed interval from negative one to four? The closed interval from negative one to four right over here…
I Asked An Actual Apollo Engineer to Explain the Saturn 5 Rocket - Smarter Every Day 280
THREE TWO ONE ZERO. All engine running. Lift-off! We have a lift-off! 32 minutes past the hour, lift-off on Apollo 11, tower clear. The Saturn V rocket is one of the most amazing vehicles ever created by humans, and if you could have ONE person explain th…