yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
I taught some students, and they taught me!
Today some students visited me to learn about what it takes to sell private jets. But I was left pleasantly surprised with what they actually ended up teaching me. I paused my workday and greeted them in the fuselage. We sat down and let me tell you, they…
Harnessing the Power of Yellowstone’s Supervolcano | Podcast | Overheard at National Geographic
The apocalyptic vision of fire bursting from the earth haunts man with the image of all and nature that is beyond his control. [Music] There’s something about volcanoes that makes them the superstars of natural disasters. Magma violently forcing its way t…
How I make SIX FIGURES from posting Real Estate listings on Craigslist
What’s up you guys, it’s Graham here. So, some of you may already know, I pretty much built my entire real estate business by posting leases on Craigslist. From that, I’ve been able to make over six figures per year consistently from clients that I’ve ori…
Charlie Munger: Be a Survivor, Not a Victim
Of course, feeling like it’s rather interesting to make change. Some people are victimized by other people, and if it weren’t for the indignation that that causes, we wouldn’t have the reforms that we need. But that truth is mixed with another. It’s very…
RC step response 2 of 3 solve
In the last video on step response, we set up the differential equation that describes our circuit, and we found that it was a non-homogeneous equation. Now we’re going to follow through on the strategy of solving it with a forced response plus a natural …
Comparing fractions with the same denominator | Math | 3rd grade | Khan Academy
Let’s compare ( \frac{2}{4} ) and ( \frac{3}{4} ). First, let’s think about what these fractions mean. ( \frac{2}{4} ) means we have some whole and we’ve split it into four equal size pieces, and we get two of those pieces. Maybe we could think about pizz…