yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
What Is Something?
The simple questions are the hardest ones to answer. What is a thing? Why do things happen? And why do they happen the way they do? Let’s try to approach this step-by-step. What are you made of? You are matter which is made of molecules which are made of…
Italy diaries🇮🇹 | solo trip in Rome, eating yummy food,shopping
Hi, it’s me Judy. While watching this video, you might think, “Aren’t you a med student, Rudy? What are you doing in the middle of the year in Italy?” The reason why I went to Italy is that I took an exam. I took a medical exam in Italy, and here is the j…
Rotations: description to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that Julia rotated triangle ABC counterclockwise about the origin by 180° to create triangle A’B’C’. Write a rule that describes this transformation. So why don’t you pause this video and see if you can do that on your own before we do this tog…
Divergent Minds
[ambient music playing] [Michael] Derek, have you ever watched Mind Field on YouTube? No, but I would like to watch it, Michael. [Michael] Okay. So Mind Field has a theme song that I’d love for you to listen to to see if you can play it for me on the p…
HOT SPIDER COSPLAY .... AND MORE! IMG! #25
In Taiwan, the Subways don’t require pants, and a boy in love—wait, it’s episode 25 of IMG. There is nothing better than sniffing hippo butt, except a jar full of kitty. Put things in front of your face to get a kiss, or a fish face, or just dress up in S…
Bloodwood: Rosewood Trafficking Is Destroying This National Park | National Geographic
Cambodia was once cloaked with forests. This is what it looks like today: more than half of the country’s trees have been clear-cut. Foreign appetites for red timbers are driving the destruction, and none is prized more than this Siamese rosewood. In Chin…