yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Peter Lynch: How to Achieve a 30% Return Per Year
I’m amazed how many people own stocks. They would not be able to tell you why they own it. They couldn’t say in a minute or less why they own it. If you really press them down, they’d say the reason I own this is, “The sucker’s going up,” and that’s the o…
Space Telescopes Maneuver like CATS - Smarter Every Day 59
[Music] Hey, it’s me D, and welcome back to Smarter Every Day! So you are probably well aware of the awesome science that comes out of space telescopes, but what you might not be aware of is the awesome science that goes into making these things work. Fo…
WARNING: The Biggest Wealth Transfer in History Is Coming
What’s up guys, it’s Graham here! So, throughout the last year, we’ve all seen the Great Resignation, where the number of workers who quit their jobs broke an all-time U.S. record. The Great Reset claimed that by 2030, you’ll own nothing and be happy. And…
Syria, Israel, Ukraine - A New Decade of War
10 years ago, in 2014, we asked if war was over. Based on long-term trends in the last century, it seemed violent conflict was on the decline and the world more peaceful than ever. Our video began with the Russian invasion of Ukraine and the war between H…
Breaking Down HackerRank's Survey of 40,000 Developers with Vivek Ravisankar
All right, the Veck, why don’t we start with what you guys do, and then we’ll rewind to before you even did YC? Yes, sure! I’m S. V. Ivent, one of the founders and CEO of HackerRank. Our mission at HackerRank is to match every developer to the right job,…
Quantum Mechanics: The Uncertainty Within
When I was a kid, I loved science, but I felt as though there was no point in becoming a scientist. Everything was already invented; everything we needed to know had already been discovered. Great! I mean, we had equations to describe all kinds of things—…