yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy


2m read
·Nov 10, 2024

  • [Instructor] So we have two vectors here, vector A and vector B. And what we're gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And as we'll see, we'll get another third vector.

And there's two ways that we can think about this visually. One way is to say, all right, if we want to start with vector A and then add vector B to it, what we can do is take a copy of vector B and put its tail right at the head of vector A. Notice I have not changed the magnitude or the direction of vector B. If I did, I would actually be changing the vector.

And when I do it like that, this defines a third vector which we can use as the sum of A plus B. The sum is going to start at the tail of vector A and end at the head of vector B here. So, let me draw that. It would look something like that. And we can call this right over here, vector C. So we could say A plus B is equal to vector C.

Now we could have also thought about it the other way around. We could have said, let's start with vector B and then add vector A to that. So I'll start with the tail of vector B and then at the head of vector B, I'm going to put the tail of vector A. So it could look something like that.

And then once again, the sum is going to have its tail at our starting point here and its head at our finishing point. Now, another way of thinking about it is we've just constructed a parallelogram with these two vectors by putting both of their tails together. By taking a copy of each of them and putting that copy's tail at the head of the other vector, you construct a parallelogram like this, and then the sum is going to be the diagonal of the parallelogram.

But hopefully you appreciate this is the same exact idea. If you just add by putting the head to tail of the two vectors and you construct a triangle, the parallelogram just helps us appreciate that you can start with the yellow vector and then the blue vector or the blue vector first and then the yellow vector. But either way, the sum is going to be this vector C.

More Articles

View All
Statistical and non statistical questions | Probability and Statistics | Khan Academy
What I want to do in this video is think about the types of questions that we need statistics to address and the types of questions that we don’t need statistics to address. We could call the ones where we need statistics as statistical questions. I’ll ci…
Adding and subtracting on number line 2 | 2nd grade | Khan Academy
Which number line shows 361 + 544? Let’s see, in all of them we’re starting at 361, so now let’s add 544. This one starts with adding 400, and then 50, and then 4; it’s adding 454, not 544. Now this one adds 500, then 40, and then 4, so this is adding 5…
Interpreting determinants in terms of area | Matrices | Precalculus | Khan Academy
So, I have a two by two matrix here, and we could view it as having two column vectors. The first column can define this vector (3, 1), which I’ve depicted in blue here. Then, that second column you can view it as telling us that we have another vector (1…
A Quest to Find Canada’s Elusive Coastal Wolf | Nat Geo Live
I’d like to start by telling you about this place. This is the west coast of Vancouver Island in British Columbia, Canada. I was lucky enough to first visit this place back in 2011, and whilst I was there, I fell in love with this animal. She is a female …
Khan for Educators: Creating assignments
Hi, I’m Megan from Khan Academy, and in this video, we’ll learn how to find and assign exercises, videos, and articles on Khan Academy for your classes or students. In order to create an assignment, we recommend teachers start by finding and assigning co…
Kevin O'Leary's Predictions for 2022: Are we ready for what's coming next year?
[Music] He is the chairman of O’Leary Financial Group. He is a Shark Tank investor. He is a friend of the show. Mr. Wonderful is back to give us his, uh, I guess wrap up on what has been a pretty impressive year to say the least. Kevin will have, uh, you …