yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus 2c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let H be the vertical distance between the graphs of f and g in region s. Find the rate at which H changes with respect to x when x is equal to 1.8.

So, we have region s right over here. You can't see it that well since I drew over it. What you see in region s, the function f is greater than the function g; it's above the function g. So we can write H(x) as being equal to f(x) minus g(x).

What we want to do is find the rate at which H changes with respect to x. We could write that as H prime of x, but we want the rate when x is equal to 1.8. So H prime of 1.8 is what we want to figure out now.

We could evaluate f prime of 1.8 and g prime of 1.8. To do that, we would take the derivatives of each of these functions. We know how to do that; it's within our capabilities.

But it's important to realize when you're taking the AP test that you have a calculator at your disposal. A calculator can numerically evaluate derivatives and can numerically integrate. So whenever they want us to find the area or evaluate an integral where they give the endpoints or evaluate a derivative at a point, well, that's a pretty good sign that you could probably use your calculator here.

What's extra good about this is we have already essentially input H(x) in the previous steps. In part A, I had defined this function here, and this function is essentially H(x). I took the absolute value of it, so it's always positive over either region, but I could delete the absolute value if we want.

So, let me delete that absolute value and have to get rid of that parentheses at the end. Notice this is H(x). We have our f(x), which is 1 + x + e^(x^2) - 2x, and then from that, we subtract g(x).

So we have g(x), which was a positive x^4, but we're subtracting x^4. Let me show you g(x) right over here. Notice we are subtracting it, so y1, as I've defined in my calculator, is now H(x).

Now, I can go back to the other screen and evaluate its derivative when x is equal to 1.8. I go to math, I scroll down, and we have nDerivative right here. So, I click enter.

Then, what I'm going to take the derivative of well, the function y sub one that I've defined in my calculator. I can go to variables, y variables; it's already selected function, so I'll just press enter and select the function y sub one that I've already defined.

So, I'm taking the derivative of y sub one with respect to x, and I'm going to evaluate that derivative when x is equal to 1.8. That’s simple!

Then, I click enter, and there you have it. It's approximately -3.812.

And we're done! You know, one thing that you might appreciate from this entire question, and even question one, is they really want to make sure that you understand the underlying conceptual ideas behind derivatives and integrals. If you understand the conceptual ideas of how to use them to solve problems and you have your calculator at your disposal, these are not too hairy. These can be done fairly quickly!

More Articles

View All
Newton's third law | Physics | Khan Academy
Earth puts a force on an apple making it fall down. But the question is, does the apple put a force on the Earth as well? And if it does, is that force bigger, smaller, or the same? That’s what we want to find out in this video. Now, to try and answer th…
Jack Bogle: Sell Your Index Funds At All-Time Highs?
I don’t know anybody who has ever been successful in, uh, timing the market. I don’t even know anybody who knows anybody who has ever been successful in timing the market. [Music] This video is brought to you by Sharesight. Seek of tracking your perform…
Worked example: Product rule with mixed implicit & explicit | AP Calculus AB | Khan Academy
Let F be a function such that F of negative 1 is 3 and F prime of negative 1 is equal to 5. Let G be the function G of X is equal to 1 over X. Let capital F function to find it as the product of those other two functions. What is capital F prime of negat…
Fireflies Put on a Spectacular Mating Dance | Short Film Showcase
[Music] It’s late summer in the highland forests of Mexico. Billions of fireflies are hiding in the underbrush, waiting for the perfect night to find a mate. But most nights, something is off, and so they keep waiting. The fireflies prefer a moonless nigh…
The Craziest Philosopher of All Time
The abstract world of philosophy is interesting. From stoicism to nihilism to absurdism, there were many different schools of thought trying to teach us how to think, act, and tell right from wrong. But have you ever felt that philosophy is sometimes a bi…
What a Sea Snail Die-off Means for Californians—and the Climate | National Geographic
(slow music) [Narrator] This is a red abalone. It’s basically the oceans’ version of a garden snail. It lives primarily on large rocks in the lush kelp forests of California. It’s also been a popular delicacy in the state for over a century. While wild r…