yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How atoms bond - George Zaidan and Charles Morton


3m read
·Nov 8, 2024

Most atoms don't ride solo; instead, they bond with other atoms. And bonds can form between atoms of the same element or atoms of different elements. You've probably imagined bonding as a tug of war. If one atom is really strong, it can pull one or more electrons off another atom. Then you end up with one negatively charged ion and one positively charged ion. And the attraction between these opposite charges is called an ionic bond. This is the kind of sharing where you just give away your toy to someone else and then never get it back.

Table salt, sodium chloride, is held together by ionic bonds. Every atom of sodium gives up one electron to every atom of chlorine; ions are formed, and those ions arrange themselves in a 3D grid called a lattice, in which every sodium ion is bonded to six chloride ions, and every chloride ion is bonded to six sodium ions. The chlorine atoms never give the sodium atoms their electrons back. Now, these transactions aren't always so cut-and-dried. If one atom doesn't completely overwhelm the other, they can actually share each other's electrons.

This is like a potluck, where you and a friend each bring a dish and then both of you share both dishes. Each atom is attracted to the shared electrons in between them, and this attraction is called a covalent bond. The proteins and DNA in our bodies, for example, are held together largely by these covalent bonds. Some atoms can covalently bond with just one other atom, others with many more. The number of other atoms one atom can bond with depends on how its electrons are arranged.

So, how are electrons arranged? Every atom of a pure, unbonded element is electrically neutral because it contains the same number of protons in the nucleus as it does electrons around the nucleus. And not all of those electrons are available for bonding. Only the outermost electrons, the ones in orbitals furthest from the nucleus, the ones with the most energy—only those participate in bonding. By the way, this applies to ionic bonding too. Remember sodium chloride? Well, the electron that sodium loses is the one furthest from its nucleus, and the orbital that electron occupies when it goes over to chlorine is also the one furthest from its nucleus.

But back to covalent bonding. Carbon has four electrons that are free to bond, nitrogen has three, oxygen two. So, carbon is likely to form four bonds, nitrogen three, and oxygen two. Hydrogen only has one electron, so it can only form one bond. In some special cases, atoms can form more bonds than you'd expect, but they better have a really good reason to do so, or things tend to fly apart. Groups of atoms that share electrons covalently with each other are called molecules.

They can be small. For example, every molecule of oxygen gas is made up of just two oxygen atoms bonded to each other. Or they could be really, really big. Human chromosome 13 is just two molecules, but each one has over 37 billion atoms. And this neighborhood, this city of atoms, is held together by the humble chemical bond.

More Articles

View All
What The Ultimate Study On Happiness Reveals
This video is about one of the most important questions: what leads to a happy life? Realistically, money. Being wealthy is definitely a big aspect of it. To save a lot of money. Money. Money. Earning money. It’s very important to be rich. It’s ea…
Conditions for MVT: graph | Existence theorems | AP Calculus AB | Khan Academy
So we’re asked does the mean value theorem apply to h over the interval, and they actually give us four different intervals here. So we should separately consider them. This is the graph of y is equal to h of x. So pause this video and see does the mean …
THIS IS THE STOIC SECRET FOR EVERYTHING YOU DESIRE TO HAPPEN | STOICISM
[Music] Have you ever dreamed of a world where all the things you want come true? A place where your goals, your dreams, and your aspirations are not just possibilities but palpable realities? Well, you are in the right place! Today we are going to talk …
Species and the environment | Mechanisms of evolution | High school biology | Khan Academy
So we tend to view evolution and natural selection and the formation of new species, which is often called speciation, as a slow process that could take tens or hundreds of thousands of years, or in many cases millions of years. And that’s why it’s always…
Letter from a Birmingham Jail | US government and civics | Khan Academy
What we’re going to read together in this video is what has become known as Martin Luther King’s “Letter from a Birmingham Jail,” which he wrote from a jail cell in 1963 after he and several of his associates were arrested in Birmingham, Alabama, as they …
Ancient City of Nan Madol | Lost Cities With Albert Lin
[dramatic music playing] MALE SPEAKER: This is it, Albert. Welcome to the jungle. We are on sacred grounds right now. You’re just beginning to see part of the structures. ALBERT LIN: I’ve never seen anything like this. MALE SPEAKER: Welcome to Nan Mado…