yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How atoms bond - George Zaidan and Charles Morton


3m read
·Nov 8, 2024

Most atoms don't ride solo; instead, they bond with other atoms. And bonds can form between atoms of the same element or atoms of different elements. You've probably imagined bonding as a tug of war. If one atom is really strong, it can pull one or more electrons off another atom. Then you end up with one negatively charged ion and one positively charged ion. And the attraction between these opposite charges is called an ionic bond. This is the kind of sharing where you just give away your toy to someone else and then never get it back.

Table salt, sodium chloride, is held together by ionic bonds. Every atom of sodium gives up one electron to every atom of chlorine; ions are formed, and those ions arrange themselves in a 3D grid called a lattice, in which every sodium ion is bonded to six chloride ions, and every chloride ion is bonded to six sodium ions. The chlorine atoms never give the sodium atoms their electrons back. Now, these transactions aren't always so cut-and-dried. If one atom doesn't completely overwhelm the other, they can actually share each other's electrons.

This is like a potluck, where you and a friend each bring a dish and then both of you share both dishes. Each atom is attracted to the shared electrons in between them, and this attraction is called a covalent bond. The proteins and DNA in our bodies, for example, are held together largely by these covalent bonds. Some atoms can covalently bond with just one other atom, others with many more. The number of other atoms one atom can bond with depends on how its electrons are arranged.

So, how are electrons arranged? Every atom of a pure, unbonded element is electrically neutral because it contains the same number of protons in the nucleus as it does electrons around the nucleus. And not all of those electrons are available for bonding. Only the outermost electrons, the ones in orbitals furthest from the nucleus, the ones with the most energy—only those participate in bonding. By the way, this applies to ionic bonding too. Remember sodium chloride? Well, the electron that sodium loses is the one furthest from its nucleus, and the orbital that electron occupies when it goes over to chlorine is also the one furthest from its nucleus.

But back to covalent bonding. Carbon has four electrons that are free to bond, nitrogen has three, oxygen two. So, carbon is likely to form four bonds, nitrogen three, and oxygen two. Hydrogen only has one electron, so it can only form one bond. In some special cases, atoms can form more bonds than you'd expect, but they better have a really good reason to do so, or things tend to fly apart. Groups of atoms that share electrons covalently with each other are called molecules.

They can be small. For example, every molecule of oxygen gas is made up of just two oxygen atoms bonded to each other. Or they could be really, really big. Human chromosome 13 is just two molecules, but each one has over 37 billion atoms. And this neighborhood, this city of atoms, is held together by the humble chemical bond.

More Articles

View All
How The Internet Changed Everything
[Music] In August 1962, JCR Licklider proposed a new but monumental idea: computers that could talk to one another. A simple idea, but one whose implications resulted in a world-changing network. The first message sent over the Internet, which at this tim…
What Is Life? Is Death Real?
Life is fundamentally different from dead stuff—or is it? Physicist Erwin Schrödinger defined life this way: Living things avoid decay into disorder and equilibrium. What does this mean? Let’s pretend that your download folder is the universe. It started…
The Origins of Disgust
Being impressed by the cognitive abilities of a chimpanzee isn’t just good for them; it is good for us, because it helps us learn about our own evolutionary history. Comparing the psychology of humans to the psychology of other primates is a great way to …
Voltage | Introduction to electrical engineering | Electrical engineering | Khan Academy
Voltage is one of the most important quantities and ideas in electricity. In this video, we’re going to develop an intuitive feeling for what voltage means. It has to do with the potential energy of electrical charges, and that’s what we’re going to cover…
Nominal interest, real interest, and inflation calculations | AP Macroeconomics | Khan Academy
Let’s say that you agree to lend me some money. Say you’re agreed to lend me 100, and I ask you, “All right, do I just have to pay you back 100?” And you say, “No, no, you want some interest.” I say, “How much interest?” And you say that you are going to…
Writing y = mx proportional equations worked example 1 | Grade 8 (TX) | Khan Academy
We are told in a rowing exercise Claudia completes 450 strokes in 15 minutes. Write an equation that can be used to find the number of strokes y she can row in x minutes. So, pause this video and see if you can figure that out. All right, now let’s think…