yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Two-sample t test for difference of means | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Kaito grows tomatoes in two separate fields. When the tomatoes are ready to be picked, he is curious as to whether the sizes of his tomato plants differ between the two fields. He takes a random sample of plants from each field and measures the heights of the plants. Here is a summary of the results.

So, what I want you to do is pause this video and conduct a two-sample t-test here. Let's assume that all of the conditions for inference are met: the random condition, the normal condition, and the independence condition. Also, let's assume that we are working with a significance level of 0.05. So pause the video and conduct the two-sample t-test to see whether there's evidence that the sizes of tomato plants differ between the fields.

All right, now let's work through this together. So, like always, let's first construct our null hypothesis. That's going to be the situation where there is no difference between the mean sizes. So, that would be that the mean size in Field A is equal to the mean size in Field B.

Now, what about our alternative hypothesis? Well, he wants to see whether the sizes of his tomato plants differ between the two fields. He's not saying whether A is bigger than B or whether B is bigger than A. So, his alternative hypothesis would be around his suspicion that the mean of A is not equal to the mean of B; that they differ.

To do this two-sample t-test, we assume the null hypothesis. Remember, we're assuming that all of our conditions for inference are met. Then, we want to calculate a t-statistic based on this sample data that we have.

Our t-statistic is going to be equal to the differences between the sample means, all of that over our estimate of the standard deviation of the sampling distribution of the difference of the sample means. This will be the sample standard deviation from sample A squared over the sample size from A, plus the sample standard deviation from the B sample squared over the sample size from B.

Let's see, we have all the numbers here to calculate it. The numerator is going to be equal to 1.3 minus 1.6. 1.3 minus 1.6, all of that over the square root of... let's see, the sample standard deviation from sample A is 0.5. If you square that, you're going to get 0.25, and then that's going to be over the sample size from A, over 22, plus 0.3 squared. So, that is 0.3 squared is 0.09, all of that over the sample size from B, all that over 24.

The numerator is just going to be negative 0.3. Negative 0.3 divided by the square root of 0.25 divided by 22 plus 0.09 divided by 24, and that gets us negative 2.44 approximately. Negative 2.44.

If you think about a t-distribution, we'll use our calculator to figure out this probability. So, this is a t-distribution right over here. This would be the assumed mean of our t-distribution. We got a result that is negative; we get a t-statistic of negative 2.44.

So, we're right over here. This is negative 2.44. We want to find out what the probability from this t-distribution of getting something at least this extreme is. It would be this area, and it would also be this area. If we got 2.44 above the mean, it would also be this area.

What I could do is use my calculator to figure out this probability right over here and then multiply that by 2 to get this one as well. The probability of getting a t-value, I guess I could say, where its absolute value is greater than or equal to 2.44 is going to be approximately equal to... I'm going to go to Second Distribution, and I'm going to the cumulative distribution function for our t-distribution, click that.

Since I want to think about this tail probability here, I'm just going to multiply by 2. The lower bound is a very, very, very negative number. You could view that as functionally negative infinity. The upper bound is negative 2.44. Negative 2.44.

Now, what's our degrees of freedom? Well, if we take the conservative approach, it'll be the smaller of the two samples minus one. The smaller of the two samples is 22, so 22 minus 1 is 21.

So, put 21 in there, 2, 21, and now I can paste, and I get that number right over there. If I multiply that by 2 (because this just gives me the probability of getting something lower than that), I also want to think about the probability of getting something 2.44 or more above the mean of our t-distribution. So, times 2 is going to be equal to approximately 0.024.

So, approximately 0.024. What I want to do then is compare this to my significance level. You can see very clearly this right over here; this is equal to our p-value. Our p-value in this situation is clearly less than our significance level.

Because of that, we said, "Hey, assuming the null hypothesis is true, we got something that's a pretty low probability below our threshold." We are going to reject our null hypothesis, which tells us that there is... this suggests the alternative hypothesis that there is indeed a difference between the sizes of the tomato plants in the two fields.

More Articles

View All
Growing Up in the African Wild : Beyond ‘Savage Kingdom’ (Part 1) | Nat Geo Live
(Dramatic orchestral music) - Imagine you’re out in Africa. It’s night-time, you’re sleeping in the back of an open vehicle, and it’s so hot that you have no clothes on and you’re still sweating. All you can hear is the distant call of a hyena and an impa…
Startup Investor School Day 1 Live Stream
And the way the course is organized is there’s a lecture and then there’s a Q&A afterwards. So please hold your questions until the Q&A session at the end unless an instructor explicitly says they want questions during their talk. I will also take…
Earth Day Eve 2021 | National Geographic
(Uplifting music) - [Jane Goodall] We’re all part of one community. Hi everyone. I’m Jessica Nabongo coming to you from the National Geographic headquarters in Washington, D.C. For over 130 years, Nat Geo has used its groundbreaking storytelling to inspi…
Services You Get As You Get Richer
When an hour of your time starts to cost tens of thousands of dollars, the way you operate changes. These are ten services you get as you get richer to make the most out of your time. Welcome to ALUX. First up, housecleaning services. When your time is w…
15 Things To Do When Life Doesn’t Go Your Way
In the novel of Our Lives, plot twists are essential to the richness of the story. They’re here to make your Ted Talk more interesting. Maybe you got fired, lost someone, or your flight got delayed, missed your connection, and now you’re writing a script …
Stonehenge Has a Traffic Problem | Podcast | Overheard at National Geographic
It’s June 2021 at Alice Zoo, this National Geographic photographer. She’s in a field in rural England. It’s this gray, overcast English morning. It was still totally dark when we arrived. There were kind of a few other figures quietly making their way in …