yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing graphs of exponential functions: negative initial value | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have a graph here of the function ( f(x) ) and I'm telling you right now that ( f(x) ) is going to be an exponential function. It looks like one, but it's even nicer. When someone tells you that, and our goal in this video is to figure out at what ( x ) value—so when—when does ( f(x) ) equal -125?

You might be tempted to just eyeball it over here, but when ( f(x) ) is -125, that's like right below the x-axis. So if I tried to eyeball it, it would be very difficult. It's very difficult to tell what value that is; it might be at 3, it might be at 4, I am not sure. So instead of actually—well, maybe I don't want to just eyeball it and guess it—instead, I'm going to actually find an expression that defines ( f(x) ) because they've given us some information here, and then I can just solve for ( x ).

So, let's do that. Well, since we know that ( f(x) ) is an exponential function, we know it's going to take the form ( f(x) = a \cdot r^x ). Well, the initial value is straightforward enough; that's going to be the value that the function takes on when ( x ) is equal to 0. You could even see here if ( x = 0 ), the ( r^x ) would just be 1, and so ( f(0) ) will just be equal to ( a ).

And so what is ( f(0) )? Well, when ( x = 0 ), this essentially—we're saying where does it intersect? Where does it intersect the y-axis? We see ( f(0) = -25 ), so ( a = -25 ). When ( x ) is 0, the ( r^x ) is just 1, so ( f(0) ) is going to be -25; we see that right over there.

Now to figure out the common ratio, there are a couple of ways you could think about it. The common ratio is the ratio between two successive values that are separated by one. What do I mean by that? Well, you could view it as the ratio between ( f(1) ) and ( f(0) ); that's going to be the common ratio, or the ratio between ( f(2) ) and ( f(1) )—that is going to be the common ratio.

Well, lucky for us, we know ( f(0) = -25 ), and we know that ( f(1) = -5 ). So just like that, we're able to figure out that our common ratio ( r ) is ( -5 / -25 ), which is the same thing as ( 1/5 ). Divide a negative by negative; you get a positive. So you're going ( 5 / 25 ), which is ( 1/5 ).

So now we can write an expression that defines ( f(x) ). ( f(x) ) is going to be equal to ( -25 \cdot (1/5)^x ). And so let's go back to our question: When is this going to be equal to -125?

So when does this equal -125? Well, let's just set them equal to each other. So let—there's a siren outside, I don't know if you hear it—so negative; I'll power through. Alright, negative. So let's see, at what ( x ) value does this expression equal -125?

Let's see, we can multiply—well, actually we want to solve for ( x ). So let's see, let's divide both sides by -25 and so we are going to get ( (1/5)^x = (-125) / (-25) ). This -25 is going to go away, and on the right-hand side, we're going to have—dividing negative by negative, it's going to be positive—it's going to be ( 1 / 5 ).

And ( (1/5)^x ) is the same thing as ( 1^x / 5^x ) is equal to ( 1 / 5 ). So we can see that ( 5^x ) needs to be equal to 625.

So let me write that over here. ( 5^x = 625 ). Now, the best way I could think of doing this is let's just think about our powers of 5. So ( 5^1 = 5 ), ( 5^2 = 25 ), ( 5^3 = 125 ), ( 5^4 = 625 ). So ( x ) is going to be 4, because ( 5^4 = 625 ).

So we can now say that ( f(4) ) is equal to -125. Once again, you can verify that; you can verify that right over here: ( (1/5)^4 = 1 / 625 ). ( -25 / 625 ) is going to be -125.

So hopefully that clears things up a little bit.

More Articles

View All
Meet the 'Blood Bikers' Who Save Lives in the U.K. | National Geographic
[Music] It would be totally unnatural for you not to think about what has happened to the patients, but the job may well have changed the course of somebody else’s. [Music] The evening starts at about 7:00 p.m. for us. Hello, the controller would ring yo…
Thought Experiments No One Can Solve
What if I told you that you died last night in your sleep and that your body and mind have been replaced by an exact replica of you, a clone who has all the same characteristics and memories that you had? Impossible, you’d probably reply. But can you prov…
This Is The World's First Geared CVT and It Will Blow Your Mind - Ratio Zero Transmission
Today I have the privilege to hold in my hands something very special. This is the world’s first operational, gear-based, continuously variable transmission or CVT. And before I explain how this piece of absolute mechanical poetry actually works, allow me…
Climate Change is Boring
Climate change is boring. Don’t get me wrong. It is incredibly important. It is just that the story of climate change is not especially compelling. And that is when the carbon dioxide concentration reached 400 parts per million. When I started making thi…
Do Robots Deserve Rights? What if Machines Become Conscious?
Imagine a future where your toaster anticipates what kind of toast you want. During the day, it scans the Internet for new and exciting types of toast. Maybe it asks you about your day and wants to chat about new achievements in toast technology. At what …
IF YOU Want To Make A MILLION DOLLARS - WATCH THIS!|Kevin O'Leary
First of all, you know, I guess I should apologize. I haven’t been back on the tube in weeks because I’ve been crazy busy shooting season 12 of Shark Tank in itself, which is an extraordinary feat. I gotta do a big shout out to the cast and crew on this b…