yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing graphs of exponential functions: negative initial value | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have a graph here of the function ( f(x) ) and I'm telling you right now that ( f(x) ) is going to be an exponential function. It looks like one, but it's even nicer. When someone tells you that, and our goal in this video is to figure out at what ( x ) value—so when—when does ( f(x) ) equal -125?

You might be tempted to just eyeball it over here, but when ( f(x) ) is -125, that's like right below the x-axis. So if I tried to eyeball it, it would be very difficult. It's very difficult to tell what value that is; it might be at 3, it might be at 4, I am not sure. So instead of actually—well, maybe I don't want to just eyeball it and guess it—instead, I'm going to actually find an expression that defines ( f(x) ) because they've given us some information here, and then I can just solve for ( x ).

So, let's do that. Well, since we know that ( f(x) ) is an exponential function, we know it's going to take the form ( f(x) = a \cdot r^x ). Well, the initial value is straightforward enough; that's going to be the value that the function takes on when ( x ) is equal to 0. You could even see here if ( x = 0 ), the ( r^x ) would just be 1, and so ( f(0) ) will just be equal to ( a ).

And so what is ( f(0) )? Well, when ( x = 0 ), this essentially—we're saying where does it intersect? Where does it intersect the y-axis? We see ( f(0) = -25 ), so ( a = -25 ). When ( x ) is 0, the ( r^x ) is just 1, so ( f(0) ) is going to be -25; we see that right over there.

Now to figure out the common ratio, there are a couple of ways you could think about it. The common ratio is the ratio between two successive values that are separated by one. What do I mean by that? Well, you could view it as the ratio between ( f(1) ) and ( f(0) ); that's going to be the common ratio, or the ratio between ( f(2) ) and ( f(1) )—that is going to be the common ratio.

Well, lucky for us, we know ( f(0) = -25 ), and we know that ( f(1) = -5 ). So just like that, we're able to figure out that our common ratio ( r ) is ( -5 / -25 ), which is the same thing as ( 1/5 ). Divide a negative by negative; you get a positive. So you're going ( 5 / 25 ), which is ( 1/5 ).

So now we can write an expression that defines ( f(x) ). ( f(x) ) is going to be equal to ( -25 \cdot (1/5)^x ). And so let's go back to our question: When is this going to be equal to -125?

So when does this equal -125? Well, let's just set them equal to each other. So let—there's a siren outside, I don't know if you hear it—so negative; I'll power through. Alright, negative. So let's see, at what ( x ) value does this expression equal -125?

Let's see, we can multiply—well, actually we want to solve for ( x ). So let's see, let's divide both sides by -25 and so we are going to get ( (1/5)^x = (-125) / (-25) ). This -25 is going to go away, and on the right-hand side, we're going to have—dividing negative by negative, it's going to be positive—it's going to be ( 1 / 5 ).

And ( (1/5)^x ) is the same thing as ( 1^x / 5^x ) is equal to ( 1 / 5 ). So we can see that ( 5^x ) needs to be equal to 625.

So let me write that over here. ( 5^x = 625 ). Now, the best way I could think of doing this is let's just think about our powers of 5. So ( 5^1 = 5 ), ( 5^2 = 25 ), ( 5^3 = 125 ), ( 5^4 = 625 ). So ( x ) is going to be 4, because ( 5^4 = 625 ).

So we can now say that ( f(4) ) is equal to -125. Once again, you can verify that; you can verify that right over here: ( (1/5)^4 = 1 / 625 ). ( -25 / 625 ) is going to be -125.

So hopefully that clears things up a little bit.

More Articles

View All
15 Principles of Effective Leadership
Today, leadership is a force that can shape the destinies of organizations, communities and individuals. Effective leadership is not just a title or a position. It’s a profound and transformative art that gathers a set of guiding principles. These princip…
Interpreting solutions of trigonometric equations | Trigonometry | Precalculus | Khan Academy
Alvaro presses the treadle of a spinning wheel with his foot. It moves a bar up and down, making the wheel spin. So just to be clear, what a treadle is: this is an old spinning wheel, and this little pedal is a treadle. As this goes up and down, it’s goin…
How to sell private jets to billionaires
Excuse me, what do you do for a living? I sell jets. No way! Yeah, sure do. That’s my showroom right there. You want to come in and see? Yeah, let’s go! Let’s go! A favorite saying of mine: time is money. Buy a jet! Here’s our showroom with a gigant…
15 Investments Rich People Make The Poor Know Nothing About
Rich people are making bank in ways everyone else isn’t even aware of. If you watch Until the End, you’ll realistically learn more about money in this video than you did in an MBA course. Here are 15 investments rich people make the poor know nothing abou…
Finding inverses of rational functions | Equations | Algebra 2 | Khan Academy
All right, let’s say that we have the function f of x and it’s equal to 2x plus 5 over 4 minus 3x. What we want to do is figure out what is the inverse of our function. Pause this video and try to figure that out before we work on that together. All righ…
Meet the Comma | Punctuation | Grammar | Khan Academy
Hello Grimarians! Today, Paige and I are going to teach you all about your new best friend, the comma. Uh, it is a piece of punctuation that has many, many, many functions. Um, and we’re just going to broadly overview them today. The comma is an extremel…