yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing graphs of exponential functions: negative initial value | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have a graph here of the function ( f(x) ) and I'm telling you right now that ( f(x) ) is going to be an exponential function. It looks like one, but it's even nicer. When someone tells you that, and our goal in this video is to figure out at what ( x ) value—so when—when does ( f(x) ) equal -125?

You might be tempted to just eyeball it over here, but when ( f(x) ) is -125, that's like right below the x-axis. So if I tried to eyeball it, it would be very difficult. It's very difficult to tell what value that is; it might be at 3, it might be at 4, I am not sure. So instead of actually—well, maybe I don't want to just eyeball it and guess it—instead, I'm going to actually find an expression that defines ( f(x) ) because they've given us some information here, and then I can just solve for ( x ).

So, let's do that. Well, since we know that ( f(x) ) is an exponential function, we know it's going to take the form ( f(x) = a \cdot r^x ). Well, the initial value is straightforward enough; that's going to be the value that the function takes on when ( x ) is equal to 0. You could even see here if ( x = 0 ), the ( r^x ) would just be 1, and so ( f(0) ) will just be equal to ( a ).

And so what is ( f(0) )? Well, when ( x = 0 ), this essentially—we're saying where does it intersect? Where does it intersect the y-axis? We see ( f(0) = -25 ), so ( a = -25 ). When ( x ) is 0, the ( r^x ) is just 1, so ( f(0) ) is going to be -25; we see that right over there.

Now to figure out the common ratio, there are a couple of ways you could think about it. The common ratio is the ratio between two successive values that are separated by one. What do I mean by that? Well, you could view it as the ratio between ( f(1) ) and ( f(0) ); that's going to be the common ratio, or the ratio between ( f(2) ) and ( f(1) )—that is going to be the common ratio.

Well, lucky for us, we know ( f(0) = -25 ), and we know that ( f(1) = -5 ). So just like that, we're able to figure out that our common ratio ( r ) is ( -5 / -25 ), which is the same thing as ( 1/5 ). Divide a negative by negative; you get a positive. So you're going ( 5 / 25 ), which is ( 1/5 ).

So now we can write an expression that defines ( f(x) ). ( f(x) ) is going to be equal to ( -25 \cdot (1/5)^x ). And so let's go back to our question: When is this going to be equal to -125?

So when does this equal -125? Well, let's just set them equal to each other. So let—there's a siren outside, I don't know if you hear it—so negative; I'll power through. Alright, negative. So let's see, at what ( x ) value does this expression equal -125?

Let's see, we can multiply—well, actually we want to solve for ( x ). So let's see, let's divide both sides by -25 and so we are going to get ( (1/5)^x = (-125) / (-25) ). This -25 is going to go away, and on the right-hand side, we're going to have—dividing negative by negative, it's going to be positive—it's going to be ( 1 / 5 ).

And ( (1/5)^x ) is the same thing as ( 1^x / 5^x ) is equal to ( 1 / 5 ). So we can see that ( 5^x ) needs to be equal to 625.

So let me write that over here. ( 5^x = 625 ). Now, the best way I could think of doing this is let's just think about our powers of 5. So ( 5^1 = 5 ), ( 5^2 = 25 ), ( 5^3 = 125 ), ( 5^4 = 625 ). So ( x ) is going to be 4, because ( 5^4 = 625 ).

So we can now say that ( f(4) ) is equal to -125. Once again, you can verify that; you can verify that right over here: ( (1/5)^4 = 1 / 625 ). ( -25 / 625 ) is going to be -125.

So hopefully that clears things up a little bit.

More Articles

View All
Prepping Chestnuts for Planting | Live Free or Die: How to Homestead
[Music] I’m going to show you how to start chestnut trees from seed. The first step is to find a chestnut tree. These are some chestnuts that we harvested. You want to promptly heat treat your chestnuts after harvesting them, or else you lose them to mold…
No Solar in the Sunshine State | Years of Living Dangerously
Here in Florida, people are only allowed to buy their power from utilities, not from independent solar companies. I’m super excited that we’re all here! This is about choice—consumers having the right to choose solar power without your name. I see that th…
How to WORRY LESS in Hard Times | STOICISM
[Music] We need to embrace the mystery of life, not try to control it. We often think that we can predict the outcome of events and label them as good or bad, but this is a mistake. We don’t know what the future holds or what the purpose of our experience…
Kevin O'Leary REVEALS His MULTI-MILLION Dollar Watch COLLECTION!
Hi there! As always, this week’s episode of Ask Mr. Wonderful comes from questions. It’s a dialogue; it’s a two-way thing. What I’m trying to do is gather a lot of questions into areas where it’s the same question over and over again, so I’m answering as …
Two Friends + 24 Hours = One Great Adventure in Croatia | Short Film Showcase
This is my friend Alistair Humphries. He’s an adventurer and writer, and in the summer, he invited me on a micro-adventure in Croatia. The idea was to fit in as much as we possibly could in 24 hours and to make a short film about it. So first, we made a …
Will COVID-19 Kill the Music Industry? | Ask Mr. Wonderful #25 Kevin O'Leary ft CEO of Rolling Stone
Hello everybody, and welcome to another episode of Ask Mr. Wonderful. Who’s my guest? This is fantastic! It’s Gus Winner, son of Young Winner, founder of Rolling Stone magazine, cultural icon, rock and roll music, fashion, politics— you name it! So much t…