yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing graphs of exponential functions: negative initial value | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have a graph here of the function ( f(x) ) and I'm telling you right now that ( f(x) ) is going to be an exponential function. It looks like one, but it's even nicer. When someone tells you that, and our goal in this video is to figure out at what ( x ) value—so when—when does ( f(x) ) equal -125?

You might be tempted to just eyeball it over here, but when ( f(x) ) is -125, that's like right below the x-axis. So if I tried to eyeball it, it would be very difficult. It's very difficult to tell what value that is; it might be at 3, it might be at 4, I am not sure. So instead of actually—well, maybe I don't want to just eyeball it and guess it—instead, I'm going to actually find an expression that defines ( f(x) ) because they've given us some information here, and then I can just solve for ( x ).

So, let's do that. Well, since we know that ( f(x) ) is an exponential function, we know it's going to take the form ( f(x) = a \cdot r^x ). Well, the initial value is straightforward enough; that's going to be the value that the function takes on when ( x ) is equal to 0. You could even see here if ( x = 0 ), the ( r^x ) would just be 1, and so ( f(0) ) will just be equal to ( a ).

And so what is ( f(0) )? Well, when ( x = 0 ), this essentially—we're saying where does it intersect? Where does it intersect the y-axis? We see ( f(0) = -25 ), so ( a = -25 ). When ( x ) is 0, the ( r^x ) is just 1, so ( f(0) ) is going to be -25; we see that right over there.

Now to figure out the common ratio, there are a couple of ways you could think about it. The common ratio is the ratio between two successive values that are separated by one. What do I mean by that? Well, you could view it as the ratio between ( f(1) ) and ( f(0) ); that's going to be the common ratio, or the ratio between ( f(2) ) and ( f(1) )—that is going to be the common ratio.

Well, lucky for us, we know ( f(0) = -25 ), and we know that ( f(1) = -5 ). So just like that, we're able to figure out that our common ratio ( r ) is ( -5 / -25 ), which is the same thing as ( 1/5 ). Divide a negative by negative; you get a positive. So you're going ( 5 / 25 ), which is ( 1/5 ).

So now we can write an expression that defines ( f(x) ). ( f(x) ) is going to be equal to ( -25 \cdot (1/5)^x ). And so let's go back to our question: When is this going to be equal to -125?

So when does this equal -125? Well, let's just set them equal to each other. So let—there's a siren outside, I don't know if you hear it—so negative; I'll power through. Alright, negative. So let's see, at what ( x ) value does this expression equal -125?

Let's see, we can multiply—well, actually we want to solve for ( x ). So let's see, let's divide both sides by -25 and so we are going to get ( (1/5)^x = (-125) / (-25) ). This -25 is going to go away, and on the right-hand side, we're going to have—dividing negative by negative, it's going to be positive—it's going to be ( 1 / 5 ).

And ( (1/5)^x ) is the same thing as ( 1^x / 5^x ) is equal to ( 1 / 5 ). So we can see that ( 5^x ) needs to be equal to 625.

So let me write that over here. ( 5^x = 625 ). Now, the best way I could think of doing this is let's just think about our powers of 5. So ( 5^1 = 5 ), ( 5^2 = 25 ), ( 5^3 = 125 ), ( 5^4 = 625 ). So ( x ) is going to be 4, because ( 5^4 = 625 ).

So we can now say that ( f(4) ) is equal to -125. Once again, you can verify that; you can verify that right over here: ( (1/5)^4 = 1 / 625 ). ( -25 / 625 ) is going to be -125.

So hopefully that clears things up a little bit.

More Articles

View All
Long run supply when industry costs are increasing or decreasing | Microeconomics | Khan Academy
What we have here we can view as the long run equilibrium or long run steady state for a perfectly competitive market. Let’s say this is the market for apples and it was this idealized perfectly competitive situation where we have many firms producing. Th…
Chinese Imperial Dynasties | World History | Khan Academy
In other videos, we talk about some of the truly ancient Chinese dynasties: the Shang Dynasty, the Joe Dynasty. As we get to the end of the Joe Dynasty, China falls into chaos in the Warring States period, which is a really tough time for China. But the s…
Arizona: Meet Khan Academy & Khanmigo
Hi everyone! Welcome to our webinar to discuss the good news. We officially have a partnership with Con Migo for this school year to fund Con Migo for students, um, and it’s broadly across the State of Arizona. So if you are a member of a public school di…
Elad Gil Shares Advice from the High Growth Handbook, a Guide to Scaling Startups
The first question I wanted to ask you: the book is called High-Growth Handbook, not the High-Growth Hanjo, just High-Growth Handbook. Given that so few companies ever make it to high growth, you know, thousands of employees, why should an average entrepr…
The Theory of Information
That was a message found in a half-broken bottle that washed up a shore near a Croatian beach. It had spent nearly 23 years at sea, from the time of writing to the time it was finally found. Who Jonathan and Mary were, and what the message actually means,…
This Small Satellite Could Predict the Next Hurricane | Short Film Showcase
What NASA did with the Apollo program was amazing, but the amounts of money that you had to spend to do that work were enormous. You can’t just do space for the sake of doing space. So, the only way to really open up the frontier is to show that the front…