yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Nanotechnology: A New Frontier


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

The world is shrinking. There's a deep and relatively unexplored world beyond what the human eye can see. The microscopic world is truly alien and truly fascinating. I'm delving further than the microscopic scale; I'm going to explore the potentials of working at a nanoscopic level, working at a level a billion times smaller than the average scale we work at today. This is nanotechnology.

Nanotechnology means any technology on a nanoscale that has applications in the real world. Nanotechnology is the science of building small—and I mean really, really small. It's pretty difficult to imagine how small a nanometer is, but let's just take a moment to try and wrap our heads around it. The tip of a pen is around a million nanometers wide, so nowhere near close. A single sheet of paper is around 75,000 nanometers thick. My human hair is around 50,000 nanometers thick, and I've run out of things to compare.

Let's just take a different approach. If a nanometer was the size of a football, the coronavirus would be the size of an adult male. A donut would be the size of New Zealand, and a chicken would be the size of the Earth. In fact, on a comparative scale, if each person on Earth was the size of a nanometer, every single person on the planet would fit into a single car—a Hot Wheels car. You get the idea: nano is super, super tiny. We're talking subatomic. So that's how big—or rather small—a nanometer is.

But why does it matter? Why look at really small things? Well, they ultimately teach us about the universe that we live in, and we can do really interesting things with them. When we move into the nanoscale, we can work with new domains and physics that don't really apply at any other scale. Nanoscience and nanotechnology can be used to reshape the world around us. Literally everything on Earth is made up of atoms—the food we eat, the clothes we wear, the buildings and houses we live in, our own bodies.

Now think for a moment about how a car works. It's not only about having all the right parts; they also need to be in the right place in order for the car to work properly. This seems obvious, right? Well, in pretty much the same way, how the different atoms in something are arranged determines what pretty much anything around you does. With nanotechnology, it's possible to manipulate and take advantage of this, much like arranging Lego blocks to create a model building or airplane or spaceship.

But there's a catch, and here's where things start to really get interesting. The properties of things also change when they're made smaller. Phenomena based on quantum effects—the strange and sometimes counterintuitive behavior of atoms and subatomic particles—occur naturally when matter is manipulated and organized at the nanoscale. These so-called quantum effects dictate the behavior and properties of particles.

We know that the properties of materials are size-dependent when working at the nanoscale. This means that scientists have the power to adjust and fine-tune material properties, and they've actually been able to do this for some time now. It's possible to change properties such as melting point, fluorescence, electrical conductivity, magnetic permeability, and chemical reactivity, to just name a few.

But where can we actually see the results of this kind of work? Well, everywhere! There are numerous commercial products already on the market that you and I use daily that wouldn't exist in the same way without having been manipulated and modified using nanotechnology. Some examples include clear nanoscale films on glasses and other surfaces to make them water-resistant, scratch-resistant, or anti-reflective. Cars, trucks, airplanes, boats, and spacecraft can be made out of increasingly lightweight materials.

We're shrinking the size of computer chips, in turn helping to enlarge memory capacity. We're making our smartphones even smarter with features like nano generators to charge our phones while we walk. We're enabling the delivery and release of drugs to an exact location within the body with precise timing, making treatments more effective than ever before. There's quite a list, and that's only a few of the possibilities.

More Articles

View All
Differentiating functions: Find the error | Derivative rules | AP Calculus AB | Khan Academy
We’re going to do in this video is look at the work of other people as they try to take derivatives and see if their reasoning is correct, and if it’s not correct, try to identify what they should have done or where their reasoning went wrong. So over he…
Why Are 96,000,000 Black Balls on This Reservoir?
(Shade balls rolling) - These are shade balls. They’re being dumped into this water reservoir in Los Angeles. And contrary to what you may have heard, their main purpose is not to reduce evaporation. So what are they really for? To find out, I’m visiting …
Buddha - Conquer Fear, Become Free
In The Dhammapada, the Buddha says that a wise person is beyond fear and, as a result, is truly free. And there’s a Zen story that shares a similar message. During a Japanese civil war, an army was taking control of different villages. And in one village,…
Car Trouble - Deleted Scene | Life Below Zero
[Music] Hooked up my generator to my truck. Trucks don’t like to start in these kind of temperatures, so you got to have a way of warming them up. What mine has is an electrical outlet that heats the block heater, the oil pan, and the battery in it to wa…
2015 AP Physics 1 free response 3c
All right, now let’s tackle part C. Use quantitative reasoning, including equations as needed, to develop an expression for the new final position of the block. Express your answer in terms of D. All right, I’m going to set up a little table here for par…
How to Stop Wasting Time on the Internet - 4 Awesome Tips
[Music] If you’re watching this video, there’s a pretty good chance that you shouldn’t be watching it and should be doing something more productive instead. But if you’ve already done your work, good for you! Either way, here are four useful strategies yo…